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1 Matrices with integer entries

Definition 1. Consider the set

Mat2(Z) =
{(

a b
c d

)
: a, b, c, d ∈ Z

}
of 2× 2 matrices with integer entries. It forms a (non-commutative) ring with unity under the usual matrix
addition and matrix multiplication. The unity of Mat2(Z) is the identity matrix ( 1 0

0 1 ) and the zero element
is the zero matrix ( 0 0

0 0 ).

For each of the following subsets S of Mat2(Z), answer whether S is a subring of Mat2(Z). (AnswerYes/ No)

If you claim S is not a subring, specify which subring conditions are not satisfied (S doesn’t contain the zero
element; S is not closed under ring addition; S is not closed under ring negation; S is not closed under ring
multiplication)

(a) S is the subset of Mat2(Z) consisting of matrices with determinant 1.

Solution: S is not a subring. It is closed under ring multiplication, however it fails the other
three properties: S doesn’t contain the zero element; S is not closed under ring addition; and S is
not closed under ring negation.

(b) S is the subset of Mat2(Z) consisting of matrices with even entries.

Solution: Yes, S is a subring. (It is a ring without unity, but it’s still a ring.)

(c) S =

{(
a b
0 d

)
: a, b, d ∈ Z

}
is the subset of upper-triangular matrices in Mat2(Z).

Solution: Yes, S is a subring with unity

(d) S =

{(
a b
b a

)
: a, b ∈ Z

}

Solution: Yes, S is a subring with unity

2 Units

Definition 2. Let R be a ring which has unity denoted by the symbol 1. An element u ∈ R is called a unit
(also called an invertible element) if there exists v ∈ R such that uv = vu = 1.

What are the units (if any) in the ring Z12?
(Hint: Example 3.11 in Section 3.2 Groups: Definitions and Examples computes the units for Z8.)
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Solution: The units are the nonzero elements which are relatively prime to 12:

1, 5, 7, 11

A notation that we have used all semester for this set of units is U(12).

3 Fields

Use the definition and choose examples from class notes or Textbook’s Section 16.2 or Section 16.1.

(a) Write the definition of a field.

(b) Give an example of an infinite field.

Solution: Q,R,C

(c) Give an example of a field consisting of 29 elements.

Solution: See Example 16.17 Textbook’s Section 16.2. For each prime p, the ring Zp is a field.

4 Nilpotent elements

Definition 3. A ring element x is called nilpotent if xk = 0 for some positive integer k.

What are the nilpotent elements (if any) in the ring Z12?

Solution: In order for xk to be zero in Z12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, the integer xk must be a
multiple of 12 = 22 · 3, so x itself must be divisible by 2 and by 3.
The only nilpotent elements in Z12 are 0 and 6.

5 Question

(a) Let R be a ring with unity 1 and x ∈ R. Prove the following: if x3 = 0 then 1− x is a unit.

(Hint: Divide 1 − x3 by 1 − x)

Solution: Let v = 1+ x+ x2. Then we have

(1− x)v = (1− x)(1+ x+ x2)

= 1+ x+ x2 − x(1+ x+ x2)

= 1+ x+ x2 − x− x2 − x3

= 1− x3

= 1 since x3 = 0

http://abstract.ups.edu/aata/rings-section-domains-and-fields.html
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(b) Let R be a ring with unity 1 and let n be a positive integer. Is the following statement true or false?
(Answer True/ False)

If x ∈ R and xn = 0, then 1− x is a unit.

If you selected False, give a counterexample; otherwise, prove it in your own notebook.

Solution: True

(1− x)(1+ x+ x2 + ...+ xn−1) = 1+ x+ x2 + ...+ xn−1 − x(1+ x+ x2 + ...+ xn−1)

= 1− xn

= 1 since xn = 0

6 Zero divisors

(a) Write down the definition of a zero divisor. (Use class notes or Textbook’s Section 16.2 or Section 16.1)

(b) What are the zero divisors (if any) of the ring Z[i] of the Gaussian integers?
(See class notes/ Example 16.12 of Textbook’s Sec 16.2)

Solution: There are no zero divisors.

(c) What are the zero divisors (if any) of the ring Z12?

Solution: All the nonzero elements which are not units: 2,3,4,6,8,9,10. For example, 9 is a zero
divisor because (9)(4) = 0.

7 Cancellation law in an integral domain

Suppose R is an integral domain and x ∈ R. If x2 = x, what are the possible values of x?
(Hint: Review the “Cancellation law for integral domains’ in Week 10 class notes or Proposition 16.15 in Textbook’s Section 16.2)

Solution: Suppose x2 = x. Then xx = x1. If x is nonzero, then the cancellation law of integral domain
tells us that x = 1.

Conclusion: x can either be the zero element or the unity element .

8 Idempotents

Definition 4. Let R be a ring. An element x in R is called an idempotent if it satisfies x2 = x.

What are the idempotents in Z12? (Hint: For each of the elements r in Z12, simply check whether r2 = r.)

Solution: The idempotents in Z12 are 0, 1, 4, 9 . The computation is below:

0 is an idempotent, since 02 = 0
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1 is an idempotent, since 12 = 1

2 is not an idempotent, since 22 = 4 ̸= 2

3 is not an idempotent, since 32 = 9 ̸= 3

4 is an idempotent, since 42 = 4

5 is not an idempotent, since 52 = 1 ̸= 5

6 is not an idempotent, since 62 = 0 ̸= 6

7 is not an idempotent, since 72 = 1 ̸= 7

8 is not an idempotent, since 82 = 4 ̸= 8

9 is an idempotent, since 92 = 9

10 is not an idempotent, since 102 = 4 ̸= 10

11 is not an idempotent, since 112 = 1 ̸= 11

9 Characteristic of a ring

(a) Write down the definition of the characteristic of a ring. (Use class notes or Textbook’s Section 16.2)

(b) Write down the statement and proof of Lemma 16.18 from Textbook’s Section 16.2

(c) What is the characteristic of the ring Z[i] of the Gaussian integers?

(d) What is the characteristic of the ring Z12? What is the characteristic of the ring Z625?

Solution: The order of the unity element 1 is 12, so the characteristic of Z12 is 12.

Solution: The order of the unity element 1 is 625, so the characteristic of Z625 is 625.
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