((SOLUTIONS))

SAMPLE HOMEWORK SUBMISSION TO HELP YOU WITH QUESTION [1](#page-1-0)

((Delete or comment out this section before submitting the homework)) Given a group G , the center of G, denoted by $Z(G)$, is the subset of elements in G that commute with every element of G. In symbols,

$$
Z(G) = \{ a \in G : ax = xa \text{ for all } x \in G \}
$$

Prove that $Z(G)$ is a subgroup of G.

Sample proof. To show that $Z(G)$ is a subgroup, we need to show the following: (1) The identity e of G is contained in $Z(G)$; (2) the subset $Z(G)$ is closed under the group operation of G; and (3) the subset $Z(G)$ is closed under taking inverses.

- (1) The identity e is in $Z(G)$ because $ex = e = xe$ for all $x \in G$ by definition of the identity element.
- (2) To show that the subset $Z(G)$ is closed under the group operation, we need to show that if $a, b \in Z(G)$ then $ab \in Z(G)$.

Suppose $a, b \in Z(G)$. (Our goal is to show that $ab \in Z(G)$, that is, $(ab)x = x(ab)$ for all $x \in G$.) Let $x \in G$. Then we have

$$
(ab)x = a(bx)
$$

= a(xb) since b is in Z(G)
= (ax)b
= (xa)b since a is in Z(G)
= x(ab)

This concludes the proof that $ab \in Z(G)$.

(3) To show that the subset $Z(G)$ is closed under taking inverses, we need to show that if $a \in Z(G)$ then its inverse a^{-1} is also in $Z(G)$.

Suppose $a \in Z(G)$. (Our goal is to show that $a^{-1} \in Z(G)$), that is, $a^{-1}x = xa^{-1}$ for all $x \in G$.) Let $x \in G$. Then we have

$$
xa=ax,
$$

since $a \in Z(G)$. Multiply on the left and on the right by a^{-1} :

$$
a^{-1}(xa)a^{-1} = a^{-1}(ax)a^{-1}
$$

$$
(a^{-1}x)(aa^{-1}) = (a^{-1}a)(xa^{-1})
$$

$$
(a^{-1}x)e = e(xa^{-1})
$$

$$
a^{-1}x = xa^{-1},
$$

as needed.

□

Definitions and theorems relevant to this homework

Definition 1 (Product of subgroups). Given two subgroups J and K of a group G, the set JK is defined to be

$$
JK = \{jk : j \in H, k \in K\}
$$

Remark 2 (Warning). In general, JK is not a subgroup of G. For example, $J = \{Id, (12)\}\$ and $K =$ $\{Id, (23)\}\$ are both subgroups of S_3 , but their product is not a subgroup (for explanation why, see our Midterm Exam solutions, Problem 7, posted on Blackboard).

The following theorem is helpful for proving whether a subgroup is normal or not normal.

Theorem 3 (Theorem 10.3 of [Judson\)](http://abstract.ups.edu/aata/normal-section-factor-groups.html). Let H be a subgroup of G. Then the following are all equivalent.

- (1) $gH = Hg$ for all $g \in G$ (that is, H is normal in G) ("left cosets are right cosets")
- (2) $ghg^{-1} \in H$ for all $h \in H$ and all $g \in G$ ("closed under conjugation")
- (3) $qHq^{-1} = H$ for all $q \in G$ ("only one conjugate subgroup")

1. PRODUCT OF SUBGROUPS $(+2 \text{ } PTS)$

Suppose G is a group, and $H \leq G$ and $N \leq G$. (Note the previous sentence says that H is any subgroup of a G , not necessarily normal in G , and N is a normal subgroup of G .) With these assumptions, prove that HN is a subgroup of G .

Proof. To show that HN is a subgroup, we need to show the following: (1) The identity e of G is contained in HN ; (2) the subset HN is closed under the group operation of G; and (3) the subset HN is closed under taking inverses.

(1) $e = ee \in HN$ because $e \in H$ and $e \in N$

(2) Supose $a, b \in HN$. Then a and b can be written as $a = h_1 n_1$ and $b = h_2 n_2$ for some $h_1, h_2 \in H$ and $n_1, n_2 \in N$. Then

 $ab = h_1 n_1 h_2 n_2$ $= h_1 h_2 n_3 n_2$ for some $n_3 \in N$, since $Nh_2 = h_2 N$, due to the assumption that N is normal

Therefore $ab \in HN$.

(3) Supose $a \in HN$. Then a and b can be written as $a = hn$ for some $h \in H$ and $n \in N$. Since N is normal and $h \in G$, we have $hN = Nh$. Thus there is $m \in N$ such that $a = hn = mh$. Then

 $a^{-1} = h^{-1}m^{-1}$

Therefore $a^{-1} \in HN$. $-1 \in HN$.

2. INTERSECTION OF SUBGROUPS $(+2$ PTS)

Suppose again that G is a group, and $H \leq G$ and $N \leq G$. Prove that $H \cap N$ is a normal subgroup of H.

Proof. ((Choose the most convenient of the three statements in Theorem [3](#page-1-1) to prove that $H \cap N$ is a normal subgroup of H)

First, verify that $H \cap N$ is a subgroup of H.

To prove that $H \cap N$ is a normal subgroup, we will show that $hxh^{-1} \in H \cap N$ for all $h \in H$ and $x \in H \cap N$. Let $h \in H$ and $x \in H \cap N$. Then $hxh^{-1} \in H$ since h, x, h^{-1} are all in H. Also, $hxh^{-1} \in N$ since N is normal in G and $h \in H \subset G$. Combining the last two sentences, we have $hxh^{-1} \in H \cap N$. □

3. COMPUTATION, NO WORK NEEDED $(+1$ PT)

Let $G = S_4$, $H = \langle (1234) \rangle$, and $N = A_4$. On your own scratch paper, compute H, N, and $H \cap N$. Then use the fact that

(1) $H/(H \cap N) \cong (HN)/N$

to quickly compute HN.

What is HN equal to?

 $H = \langle (1234) \rangle = \{(1234), (13)(24), (4321), Id\}$

(Note that two of the permutations in H are odd, and two are even)

 $N = \{$ all even permutations in $S_4\}$

 $H \cap N = \{$ the two even permutations in H } = {(13)(24), Id}

Since $|H| = 4$ and $|H \cap N| = 2$, the quotient group $H/(H \cap N)$ is of order 2. Using the fact $H/(H \cap N) \cong$ $(HN)/N$ given to use above in [\(1\)](#page-1-2), we have that the quotient group $(HN)/N$ is also of order 2. Since

 $|N| = |A_4| = 12$, we know that $|HN|$ must be $2 \cdot 12 = 24$. Since HN is a subgroup of S_4 , we conclude that HN is the entire group S_4 .

4. The First Isomorphism Theorem in words (+2 pts)

Explain the first isomorphism theorem in words to a classmate who has not seen it before. Do not use any math symbol. You might enjoy reading the blog post

[The First Isomorphism Theorem, Intuitively](https://www.math3ma.com/blog/the-first-isomorphism-theorem-intuitively) by Tai-Danae Bradley (Math3ma).

((Write your explanation here))

5. True or false? (+1 pt)

(a) Given a homomorphism from G, we can construct from it a normal subgroup of G. True or false? Given any homomorphism $f: G \to H$, we have proven that the kernel of f is a normal subgroup of G.

(b) Given a normal subgroup N of G, there is a homomorphism from G whose kernel is N. True or false? The natural (or canonical) homomorphism $f : G \to G/N$ given by $x \mapsto xN$ has N as its kernel.

6. COUNTING ABELIAN GROUPS $(+1$ PT)

How many abelian groups of order $1176 = 2^3 \cdot 3 \cdot 7^2$ are there, up to isomorphism?

Hint: See [Judson Example 13.5](http://abstract.ups.edu/aata/struct-section-finite-abelian-groups.html) for an example on how to use the Fundamental Theorem of Finite Abelian Groups to count isomorphism classes of abelian groups.

There are six isomorphism classes of abelian groups of order 1176. Two of them are below:

$$
\mathbb{Z}_8 \times \mathbb{Z}_3 \times Z_{49} \cong \mathbb{Z}_{24} \times Z_{49}
$$

$$
\mathbb{Z}_4 \times Z_2 \times \mathbb{Z}_3 \times Z_{49} \cong \mathbb{Z}_4 \times Z_6 \times Z_{49} \cong \mathbb{Z}_{12} \times Z_2 \times Z_{49}
$$

There are four more classes not listed above.

7. Acknowledgements (+1 pt)

Write down everyone who helped you, including classmates who contributed to your thought process (either through sharing insights or through being a sounding board). Write down Judson's textbook, class notes, and other written sources you used as well.

 $((Fill in))$