1 Normal subgroups of a direct product

Let $G = S_3 \times \mathbb{Z}_3$. Which of the following subgroups H of G are normal?

- (a) $H = \{Id\} \times \{0\}$
- (b) $H = \{Id\} \times \mathbb{Z}_3$
- (c) $H = \{Id, (12)\} \times \{0\}$
- (d) $H = S_3 \times \{0\}$
- (e) $H = S_3 \times \mathbb{Z}_3$

2 Simple subgroups

Definition 1. A group with no normal proper subgroups (except the trivial subgroup $\{e\}$) is called *simple*.

- (a) What are the proper subgroups of \mathbb{Z}_6 ?
- (b) Is \mathbb{Z}_6 a simple group? Answer **Yes**/ **No**
- (c) If p is a prime number, what are the proper subgroups of \mathbb{Z}_p ?
- (d) If p is a prime number, is \mathbb{Z}_p a simple group? Answer **Yes**/ **No**
- (e) Is $S_3 \times \mathbb{Z}_3$ a simple group? Answer **Yes/ No**

Remark 2. Recall that the index $[S_n : A_n] = 2$, so A_n is a normal subgroup of S_n . This means that, for $n \ge 3$, the symmetric group S_n is not simple.

3 Alternating group A_4

Definition 3. Given a subgroup H of a group G and an element $x \in G$, the subset $xHx^{-1} = \{xhx : h \in H\}$ is called a *conjugate* of H.

Let $G = A_4 = \{$ the even permutations in $S_4 \}$.

- (a) Let $H = \langle (123) \rangle = \{Id, (123), (321)\}$. Find all conjugates of the subgroup H in $G = A_4$. (Hint: H has four conjugates)
- (b) Let $J = \langle (12)(34), (13)(24) \rangle = \{Id, (12)(34), (13)(24), (14)(23)\}$. Find all conjugates of the subgroup J in $G = A_4$.
- (c) Is H a normal subgroup of A_4 ? Answer **Yes**/ **No**
- (d) Is J a normal subgroup of A_4 ? Answer **Yes**/ **No**
- (e) Is A_4 a simple group (according to Definition 1)?

Remark 4. A_5 is a simple group, and in general A_n is simple for $n \ge 5$. For more details, see Judson Section 10.2 The simplicity of the alternating group.