- (a) Consider the subgroup H = {(1), (1,2)} of S₃. Are all left cosets of H the same as all right cosets of H?
 (Possible answers: yes/no)
 - (b) Consider the subgroup $J = \{(1), (123), (132)\}$ of S_3 . Are all left cosets of J the same as all right cosets of J? (Possible answers: yes/no)
 - (c) Let $n \ge 3$. Consider the alternating subgroup A_n in the symmetric group S_n . Are all left cosets of A_n in S_n the same as the right cosets? (Possible answers: yes/no)
- 2. (a) What do the arrows in a Cayley diagram represent?
 - (b) What do the vertices in a Cayley diagram represent?
- 3. Below are Cayley diagrams of eight different groups (none of them has the same group structure). For each Cayley diagram, determine whether the corresponding group is abelian or not abelian.

(Possible answers: abelian/not abelian)

- 4. For each of the following group and its generating set, draw the Cayley graph on your own paper. Which Cayley graph from Question 3 is it? (Possible answers: A, B, C, D, E, F, G, H)
 - (i) The group S_3 with minimal generating set the transpositions (1 2) and (2 3).
 - (ii) The subgroup of S_4 generated by the transpositions (1 2) and (3 4).
 - (iii) The subgroup of S_6 generated by the 4-cycle (1 5 3 6).
 - (iv) The direct product $\mathbb{Z}_4 \times \mathbb{Z}_2$ with two generators (1,0) and (0,1).
 - (v) The direct product $\mathbb{Z} \times \mathbb{Z}_2$ with generating set $\{(1,0), (0,1)\}$.
 - (vi) The dihedral group D_4 generated by R (the counterclockwise rotation by 90°) and f (a flip along the vertical mirror).