MATH 4210/5210 ALGEBRA HOMEWORK 03

(SOLUTIONS)

1. Proof Assignment (6 pts)

Let G be a group, and let $a, b \in G$. Prove that $|a| = |b^{-1}ab|$.

Proof. Proof (not assuming a has finite order): We first prove the statement for when a has a finite order. Let n denote |a|. By definition (of the order of a group element), n is smallest positive integer such that $a^n = e$.

First, we will show that $|b^{-1}ab| \leq n$:

$$(b^{-1}ab)^{n} = \underbrace{(b^{-1}ab)(b^{-1}ab)\dots(b^{-1}ab)}_{n \text{ copies}}$$
$$= b^{-1}\underbrace{a\dots a}_{n \text{ copies}} b$$
$$= b^{-1}a^{n}b$$
$$= b^{-1}eb \text{ since } a^{n} = e$$
$$= b^{-1}b$$
$$= e$$

We've shown that $(b^{-1}ab)^n = e$, so $|b^{-1}ab| \le n$.

Next, we show $|b^{-1}ab| \ge n$: Let k denote $|b^{-1}ab|$. Then

$$e = (b^{-1}ab)^k = b^{-1}a^kb.$$

Multiply on the left by b and on the right by b^{-1} , we have

$$beb^{-1} = b(b^{-1}a^{k}b)b^{-1}$$
$$bb^{-1} = (bb^{-1})(a^{k})(bb^{-1})$$
$$e = a^{k}$$

Since n is the smallest positive integer such that $e = a^n$, we can conclude that $k \ge n$. Therefore $|b^{-1}ab| \ge n$.

We will now prove the statement for when a has an infinite order. Suppose a has infinite order, that is, $a^n \neq e$ for all $n \in \mathbb{N}$. For the sake of contradiction, suppose $b^{-1}ab$ has a finite order k. Then $e = (b^{-1}ab)^k$. By the same argument as above, this implies $e = a^k$, which contradicts the fact that a has infinite order.

2. Computation assignment (3 pts)

Consider the permutation a = (153)(47) in S_{100} .

- (a.) Compute the order of a.
- **Answer:** |a| = 6 because $a \neq e$ and $a^2 = (135) \neq e$, $a^3 \neq e$, $a^4 \neq e$, $a^5 \neq e$, but $a^6 = e$. (b.) Let b = (19)(48)(57)(23). Compute the order of b.
 - **Answer:** |b| = 2 because $b \neq e$ but $b^2 = e$
- (c.) Without computing bab, compute the order of bab. **Answer:** Since $b^2 = e$, b is its own inverse, so $bab = b^{-1}ab$, and so |bab| = |a| = 6.

3. Acknowledgements (1 pt)

Write down everyone who helped you, including classmates who contributed to your thought process (either through sharing insights or through being a sounding board). Write down Judson's textbook, class notes, and other sources you used as well.