Definition 1. The order of a group element x, denoted by |x|, is the size of its orbit $\langle x \rangle$. Note: If the size of $\langle x \rangle$ is finite, then the order of x is the smallest positive integer k such that $x^k = e$. The order of a group G, denoted by |G|, is the number of elements in G.

Remark 2. Let J be a subset of a group G. To show that J is a subgroup of G, show the following:

- (a) J contains the identity of G
- (b) for all $x, y \in J$, the product xy is also in J (closure under the group operation)
- (c) for all $x \in J$, the inverse x^{-1} is also in J (closure under taking inverses)

Theorem 3. If a permutation σ can be expressed as the product of an even number of transpositions, then any other product of transpositions equaling σ must also contain an even number of transpositions. Similarly, if σ can be expressed as the product of an odd number of transpositions, then any other product of transpositions equaling σ must also contain an odd number of transpositions.

Proposition 4. For any $\sigma \in S_n$, we have σ $(a_1 a_2 \ldots a_k) \sigma^{-1} = (\sigma(a_1) \sigma(a_2) \ldots \sigma(a_k)).$

Definition 5. Let $H \leq G$. If $x \in G$, the set $xH := \{xh \mid h \in H\}$ is a *left coset* of H.

Lemma 6. Let H be a subgroup of G and let that $a, b \in G$. The following conditions are equivalent.

- (1) aH = bH
- (2) $b \in aH$
- (3) $b \ a^{-1} \in H$

Theorem 7 (Lagrange's Theorem). If G is a finite group and $H \leq G$, then $[G:H] = \frac{|G|}{|H|}$. In particular, |H| divides |G|.

Theorem 8. Let H be a subgroup of G. Then the following are all equivalent.

(1) gH = Hg for all $g \in G$ (that is, H is normal in G) ("left cosets are right cosets")

(2) $ghg^{-1} \in H$ for all $h \in H, g \in G$ ("closed under conjugation")

(3) $gHg^{-1} = H$ for all $g \in G$ ("only one conjugate subgroup")

Definition 9. Let $H \leq G$. The set $G/H = \{xH : x \in G\}$ is the set of all left cosets of H in G. If $H \leq G$, then G/H forms a group (called the *quotient group of* G by H) under coset multiplication (xH)(yH) = (xy)H.

Definition 10. A group homomorphism is a function $\phi: (G_1, *) \to (G_2, \circ)$ satisfying

 $\phi(a * b) = \phi(a) \circ \phi(b),$ for all $a, b \in G_1$.

Proposition 11. Let $f: G_1 \to G_2$ be a homomorphism of groups. Then

- i. If e_1 is the identity of G_1 , then $f(e_1)$ is the identity of G_2 .
- ii. For any element $g \in G_1$, $f(g^{-1}) = [f(g)]^{-1}$.
- iii. If H_1 is a subgroup of G_1 , then $f(H_1)$ is a subgroup of G_2 .

iv. If H_2 is a subgroup of G_2 , then $f^{-1}(H_2) = \{g \in G_1 : f(g) \in H_2\}$ is a subgroup of G_1 .

Definition 12. A group G is said to *act* on a set X if there is a homomorphism $\phi : G \to \text{Perm}(X)$.

Definition 13 (Ideal test). A subset I of a ring R is called an *ideal* of R if it satisfies the following properties:

- I is an additive subgroup of R
- I "absorbs" all elements of R, that is, for all $a \in I$ and $r \in R$, we have $ar \in I$ and $ra \in I$.

Theorem 14. Let R be a commutative ring with unity and M an ideal in R. Then M is a maximal ideal of R if and only if the quotient ring R/M is a field.

Theorem 15. Let R be a commutative ring with unity and P an ideal in R. Then P is a prime ideal of R if and only if the quotient ring R/P is an integral domain.