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1. (a) Let n > 1. Let An and Bn denote the set of even permutations and the set of odd permutations,
respectively. Define a map f : An → Bn by f(π) = (1 2)π for all π ∈ An.

Prove that this map is injective and surjective.

Solution: Use the same proof as the proof of Proposition 5.17 in Judson textbook here:
http://abstract.ups.edu/aata/permute-section-permutation-definitions.html.

(b) Let H be a subgroup of a group G, and let x ∈ G. Define a bijective map f from H to xH.

Solution: Define
f : H −→ xH , by f(h) = xh

for all h ∈ H.

(c) Show that this map is surjective.

Solution: Suppose b ∈ xH. Then by definition of left coset, b = xh for some h ∈ H. Let a := h.
Then f(a) = xa = xh = b, as needed.

(d) Suppose G is a non-abelian group of order 1000 and H is a subgroup of order 20. Let x be an element of
G which is not in H.

(i) How many elements are in the left coset xH?

(ii) How many elements are in the right coset Hx?

Solution: (i-ii)The size of every left coset (and also right coset) is the same as the size of H, so the
answer is 20 for both questions.

(iii) How many left cosets of H are there?

Solution: (iii) By Lagrange’s Theorem, there are 1000/20 = 50 left cosets of H.

2. (a) Find all subgroups of D4, and arrange them in a subgroup lattice. Moreover, label each edge between
K ≤ H with the index, [H : K].

Solution: The subgroup lattice of D4 is shown below. The label on each edge is 2.

D4

⟨r2, f⟩ ⟨r⟩ ⟨r2, rf⟩

⟨f⟩ ⟨r2f⟩ ⟨r2⟩ ⟨rf⟩ ⟨r3f⟩

⟨e⟩
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(b) Is f⟨r⟩ = ⟨r⟩f? What about other left and right cosets of ⟨r⟩? Prove your answer.

Solution: Yes, x⟨r⟩ = ⟨r⟩x for all x ∈ D4. First, we see that the group ⟨r⟩ has order 4. We know
that the group D4 has order 8. By Lagrange’s theorem, we get that [D4 : ⟨r⟩] = 8/4 = 2. We’ve seen
in class that this implies that the left cosets of ⟨r⟩ and the right cosets of ⟨r⟩ coincide.

(c) Is the left coset r3f⟨r2, f⟩ equal to the right coset ⟨r2, f⟩r3f?

Solution: Yes. Similar explanation as the previous part.

3. For each statement below, determine if it is true or false. Prove your answer.

(a) If the order of a group G is infinite (that is, if there are infinitely many elements in G), then the order of
every non-identity x ∈ G is also infinite.

Solution: False. Consider the infinite direct product Z×D3. There are infinitely many elements in
this group because Z is infinite, but the order of the element (0, f), where f is one of the flips, is 2.

(b) Every cyclic group is abelian.

Solution: True.

Possible explanation 1: Every cyclic group is isomorphic to either Z or Zn.

Possible explanation 2: A cyclic group G is a group which can be generated by only one element, so
G = ⟨r⟩ for some r ∈ G. If x, y ∈ G, then x = rk and y = rℓ for some k, ℓ ∈ Z. So xy = rkrℓ = rk+ℓ =
rℓrk = yx.

(c) Every abelian group is cyclic.

Solution: False. Proof: A possible counterexample is V4 or Z2 × Z2 which is not cyclic (since it’s a
group of order 4 which is not isomorphic to Z4). It requires at least two generators.

(d) Every dihedral group is abelian.

Solution: False. Proof: The dihedral group D3 of order 6 is not abelian, for example, rotation by
120o followed by a flip is not the same as the same flip followed by a rotation by 120o.

(e) Every symmetric group is not abelian.

Solution: False. The symmetric group S2 = {Id, (12)} on two objects is cyclic and therefore abelian.

(f) There is a cyclic group of order 100.

Solution: True. Proof: Take the additive group Z100, or the multiplicative subgroup of the 100-th
roots of unity in C∗.
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(g) There is a symmetric group of order 100

Solution: False. The number 100 is not equal to any factorial. Check that 4! = 24 < 100 < 5! = 120.

(h) If some pair of distinct, non-identity elements in a group commute, then the group is abelian.

Solution: False. In D3, the elements R and R2 commute, but D3 is not abelian.

(i) If every pair of elements in a group commute, the group is cyclic.

Solution: False. The group V4 is not cyclic, but every pair of elements commutes.

(j) If every pair of elements in a group commute, the group is abelian.

Solution: True, by definition.

4. (a) Is there a dihedral group of order 27?

Solution: No. A dihedral group has n reflections and n rotations (for some positive integer n), so
the order of a dihedral group is even.

(b) If an alternating group An has order M , what order does the symmetric group Sn have?

Solution: The order of Sn is 2M , since we’ve seen that there is a bijection between the set of even
permutations and the set of odd permutations and even permutations of Sn.

5. For each part below, compute the orbit of the element in the group. Your answer should be a list of elements
from the group that ends with the identity.

(a) The element R2 in the group D10

Solution: {R2, R4, R6, R8, e}

(b) The element 10 in Z16

Solution: {10, 4, 14, 8, 2, 12, 6, 0}

(c) The element 25 in the group Z30

Solution: {25, 20, 15, 10, 5, 0}

6. Recall that Z is a group under the operation of ordinary addition.
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(a) Create a Cayley diagram for it.

Solution: If we choose a minimal generating set {1}, we have the following (where a = +1):

a a a
· · · · · ·

(b) Is it abelian?

Solution: Yes, it is a cyclic group, since it can be generated by the element 1 or −1.

(c) Give a minimal generating set consisting of more than one element.

Solution: For example, {2, 3} or {7, 12} would work.

7. (a) Is there a group (of order larger than 1) in which no element (other than the identity) is its own inverse?

Solution: Yes. For example, the cyclic group of order 3. You can observe this from the multiplication
table.

(b) Is there a group (of order larger than 3) in which no element (other than the identity) is its own inverse?

Solution: Yes. For example, the cyclic group of order 5. Every non-identity element has order 5, by
Lagrange’s Theorem.

(c) Find a group (of order larger than 1) such that there is only one solution to the equation x2 = e, that is,
the solution x = e, or explain why no such group exists.

Solution: The groups in the solutions to parts (a), (b) would work.

(d) Find a group that has exactly two solutions to the equation x2 = e, or explain why no such group exists.

Solution: The cyclic group of order 4 generated by r. The two solutions are x = e and x = r2.

(e) Find a group with more than 2 solutions to the equation x2 = e, or explain why no such group exists.

Solution: The Klein-4 group ⟨a, b⟩ with minimal generating set {a, b}. There are four solutions,
x = e, x = a, x = b, and x = ab. You can observe this from the multiplication table, or consider the
group Z2 × Z2 and check that all four elements satisfy the equation x2 = e.

(f) Find a group with at least two elements in it, and only one solution to the equation x3 = e (that is, the
solution x = e) or explain why no such group exists.

Solution: The groups Z2,Z4, and V4 would work.
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(g) Find a group that has more than two solutions to the equation x3 = e, or explain why no such group
exists.

Solution: In the cyclic group Z3, every element satisfies the equation x3 = e.

(h) There are 2 non-isomorphic groups of order 6. What are their names? Specify which, if any, are abelian.

Solution: One is non-abelian, the Dihedral group D3 which is isomorphic to the symmetric group
S3. The other is the cyclic group Z6, which is abelian.

(i) Suppose m is a positive integer. If there exists only one group of order m, to what family must this group
belong? Why?

Solution: For each positive integer k, we have the cyclic group Zk is a group. Since there exists only
one group of order m, this group must belong to the family of cyclic groups.

8. (a) If H is a subgroup of G and a ∈ G, then a left coset aH is ... [give the definition]

Solution: the set {ah : h ∈ H}

(b) The index [G : H] of a subgroup H ≤ G is [give a definition, not a theorem!] . . .

Solution: ... the number of left cosets of H.

9. Determine whether each of the following diagrams are Cayley diagrams. If the answer is “yes,” say what
familiar group it represents, including the generating set. If the answer is “no,” explain why.

(a)

Solution: Yes.

This is the Cayley diagram of D3 with generating set {R, f}, where R is a rotation by 2π/3 and f is
any flip.

It could also be the Cayley diagram of S3 with generating set {(123), (12)}.

(b)
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Solution: Yes. This is the Cayley diagram of the Dihedral group D4 with minimal generating set
f, g, where f and g are reflections with respect to mirrors 45o apart.

(c)

Solution: No. There is only one type of arrow, which means that there is only one generator. This
arrow is double-sided, which means that this generator is of order 2. If this is the Cayley diagram of
a group, the group should have order 2, not 4.

(d)

Solution: No. There is only one type of arrow, which means that there is only one generator. This
arrow has order 4 because we see that four arrows form a 4-cycle. If this is the Cayley diagram of a
group, the group should have order 4, not 8.

10. Answer the following questions about permutations and the symmetric group.

(a) Write as a product of disjoint cycles (read from right to left as usual):
(1 5 2) (1 2 3 4) (1 3 5) =
(1 3 5) (1 2 3 4) (1 5 2) =

Solution: (1 5 2) (1 2 3 4) (1 3 5) = (1 4 5)(2 3)
(1 3 5) (1 2 3 4) (1 5 2) = (1)(2)(3 4)(5) = (3 4)

(b) Write (1 2 3 4) as a product of transpositions (i.e., 2-cycles). Read from right to left as usual.

Solution: (14)(13)(12) or (12)(24)(23) or (23)(31)(34) or (34)(24)(14) (or other options)

(c) What is the inverse of the element (1 3 2 6) (4 5) in S6?

Solution: (45)(1623)

(d) The order of an element g ∈ G is equal to the order (number of elements) of ⟨g⟩, the group generated by
g. When the order is finite, it is also the minimum positive integer k such that gk = e. What is the order
of the element (1 2 3 6) (4 5 7) in S7?

Solution: The order is 12 since [(1 2 3 6) (4 5 7)]i ̸= id for i = 1, 2, ..., 11 and [(1 2 3 6) (4 5 7)]12 = id
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(e) Find an element of order 20 in S9.

Solution: (1 2 3 4 5) (6 7 8 9)

Theorem 1. Let H be a subgroup of G. Then the following are all equivalent.

(i) The subgroup H is called normal in G, that is, gH = Hg for all g ∈ G; (“left cosets are right cosets”);

(ii) ghg−1 ∈ H for all h ∈ H, g ∈ G; (“closed under conjugation”).

(iii) gHg−1 = H for all g ∈ G; (“only one conjugate subgroup”)

11. (a) Consider the subgroup H = {(1), (1, 2)} of S3. Is H normal?

Solution: No, you can check that (123)H is not equal to H(123).

Another example that would work is (13)H ̸= H(13).

A possibly faster way to determine this is to see that (13) = (23)(12)(23)−1 and (23) = (13)(12)(13)−1

are conjugate to (12), but they are not in H, hence failing part (ii) of the above theorem for being
normal.

(b) Consider the subgroup J = {(1), (123), (132)} of S3. Is J normal?

Solution: Yes, there is only other left coset of J (other than J itself), and there is only other other
right coset of J (other than J), so they must be the same.

This satisfies part (i) of the above theorem, Theorem 1, for being normal.

(c) Consider the subgroup H = ⟨(1234)⟩ of S4. Is H normal?

Solution: No. For example, the 4-cycle (1324) is a conjugate of (1234) but it is not in H.

(d) Let n > 2. Is An a normal subgroup of Sn?

Solution: Yes. Proof: There are exactly two left cosets of An in Sn. So the left coset xAn which is
not equal to An must equal the right coset which is not equal to An.

(e) Consider a mystery subgroup K of Z5 × Z8. Is K normal?

Solution: Every subgroup of an abelian group is normal, so K is normal.

12. Let H be a subgroup of G. Given two fixed elements a, b ∈ G, define the sets

aHbH := {ah1bh2 : h1, h2 ∈ H} and abH := {abh : h ∈ H} .

Page 7 of 16



Abstract Algebra I Last updated: October 23, 2024 Extra practice for Midterm

(a) Prove that if H is normal then aHbH ⊂ abH.

Solution: To show aHbH ⊂ abH, let h1, h2 ∈ H. We need to show that ah1bh2 can be written as
abh for some h ∈ H. Since H is normal in G, the left coset bH is equal to the right coset Hb. Hence
we can write h1b as bh3 for some h3 ∈ H, so ah1bh2 = abh3h2, which is in abH since h3h2 ∈ H.

(b) Prove that the statement is false if we remove the “normal” assumption. That is, give a specific G and H
and a, b ∈ G such that aHbH is not a subset of abH.

Solution: Possible proof: Let G = D3, let H = ⟨f⟩. But rfre = rfr = f , which is in rHrH but not
in r2H = {r2, r2f}, so rHrH ̸= r2H.

Try to come up with a similar proof but using S3.

Possible scratch work (thought process):

Let G = D3 (because every group with order 5 or lower is abelian). To come up with a counterex-
ample, I have to make sure to pick a non-normal subgroup H (since the statement is true if H is a
normal subgroup), so I can pick one of the subgroups which is generated by exactly one reflection, ⟨f⟩
or ⟨rf⟩ or ⟨r2f⟩.

I pick H := {e, f}. To come up with a counterexample, I have to make sure to pick a, b /∈ H (otherwise
the statement would be true).

First, I try a = r and b = r, and I check whether aHbH = abH.

I first compute abH (because I see abH has a simpler definition that the other set).

Computing abH, I get abH = r2H = {r2, r2f}.

Now, I try to find an element in aHbH = rHrH which is not in r2H. Since H has only two elements,
to compute all elements of aHbH I just need to compute aebe, aebf , afbe, and afbf . But I see that
the first two are in abH by Definition of abH, so I will only check the last two elements.

I try afbe = rfr = f , which is not in abH. This example would be enough to show that rHrH ̸= rrH.

(You can also try a = b = rf , or a = r and b = rf , and see what happens.)

(c) In class, we proved that multiplication of cosets of N is well-defined if N is a normal subgroup.

Give an example where “multiplication” of cosets is not well-defined. That is, give a group G and a
subgroup H where a1H = a2H and b1H = b2H but a1b1H ̸= a2b2H.

Solution: You can use the sameG andH as in the previous question. Just make sure your a1, a2, b1, b2
are not in H.

Another possible example is the following:
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Consider the symmetric group S3 and let J := ⟨(1 2)⟩.
Then the three left cosets of J are:

(a) J = {e, (1 2)},

(b) (132)J = (13)J = (1 3), (1 3 2)}, and

(c) (1 2 3)J = (2 3)J = {(2 3), (1 2 3)}.

Take a1 := (132), a2 := (13),
b1 := (123), and b2 := (23).

Then a1b1J = (132)(123)J = eJ = J , but a2b2J = (13)(23)J = (123)J ̸= J .

13. (a) Given two groups A and B, what is the definition of the set A×B?

(b) Review the binary operation on A×B

(c) What is the identity element of A×B?

Solution: (1A, 1B), where 1A is the identity element of A, and 1B is the identity element of B.

(d) If (a, b) ∈ A×B, what is the inverse (a, b)−1 equal to?

Solution: (a−1, b−1)

(e) Assume that neither of A and B is the trivial group. Prove that these four subgroups are normal in A×B:

{eA} × {eB}, A× {eB}, {eA} ×B, A×B

14. (a) True or false? The order of the group Dn is the same as the order of the group Z2 × Zn.

Solution: True, the order is 2n for both.

(b) True or false? The group Dn is isomorphic to the group Z2 × Zn.

Solution: False. If n ≥ 3, the Dihedral group Dn is non-abelian, but Z2 × Zn is.

(c) True or false? The group Z14 is isomorphic to the group Z2 × Z7.

Solution: True.
A possible proof: Note that Z2 × Z7 can be generated by the single element (1, 1) ∈ Z2 × Z7 which
has order 14, the least common multiple of 2 and 7. So Z2 × Z7 is a cyclic group of order 14.

(d) True or false? The group Z16 is isomorphic to the group Z4 × Z4.
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Solution: False. The group Z16 contains an element of order 16, that is, the number 1. Every element
in the group Z4 ×Z4 has order 1, 2, or 4, so it cannot be generated by just one element; thus Z4 ×Z4

is not a cyclic group.

(e) Is Z12 isomorphic to Z2 × Z6?

Solution: No. The group Z2 × Z6 has no element of order 12.

(f) Which direct product is isomorphic to Z12?

Solution: The direct product Z4 ×Z3 is isomorphic to Z12, since it can be generated by the element
(1, 1) which has order 12.

15. Let H be a subgroup of G.

(a) What does the notation G/H mean?

Solution: The set of all left cosets of H in G, that is, {xH | x ∈ G}.

(b) When is G/H a group?

Solution: When H is a normal subgroup of G.

(c) If G/N is a quotient group, what is the binary operation of the quotient group G/N?

Solution: (aN)(bN) := abN .

(d) Consider the symmetric group S3 and a subgroup H := ⟨(1 2)⟩. Is the set S3/⟨(1 2)⟩ a quotient group?
Prove your answer. If it is a quotient group, what is it isomorphic to?

Solution: No, S3/⟨(1 2)⟩ is not a quotient group because H is not normal in S3.

A possible proof: The left coset (123)⟨(1 2)⟩ = {(23), (123)} and the right coset ⟨(1 2)⟩(123) =
{(13), (123)} are not equal.

Another way to see that H is not normal is to recall that there are conjugates of (12) which are not
in H, namely, (13) and (23).

(e) Consider the symmetric group S3 and a subgroup J := ⟨(1 2 3)⟩. Is S3/J a quotient group? Prove your
answer. If it is a quotient group, what is it isomorphic to?

Solution: Yes, S3/J is a quotient group because J is normal in S3.

A possible proof: Since the order of S3 is 6 and the order of J is 3, there are two left cosets of J .
Hence the left coset of J (which is not J itself) must be equal to the right coset of J (which is not
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equal to J itself).

The quotient froup S3/J is isomorphic to Z2 since there are two left cosets of J in S3.

16. The following are all normal subgroups of D4:

(a) The trivial subgroup {e},
(b) the only normal subgroup of order 2, ⟨r2⟩,
(c) all the subgroups of order 4: ⟨r⟩, ⟨r2, f⟩, ⟨r2, rf⟩, and
(d) D4 itself.

For each N above, what familiar group is D4/N isomorphic to?

Solution: The only one that we have to compute carefully is D4/⟨r2⟩. We know that the number of cosets
in D4/⟨r2⟩ is 4, but there are two groups of order 4 (up to isomorphism), so let’s list the cosets in D4/⟨r2⟩:
⟨r2⟩, r⟨r2⟩, f⟨r2⟩, and rf⟨r2⟩.
By inspection, we see that each element (each coset) in D4/⟨r2⟩ has order 2, so this quotient group must
be isomorphic to V4, and not to Z4.

Final answer:
D4/{e} ∼= D4

D4/⟨r2⟩ ∼= V4,
For each subgroup H of order 4, we have D4/H ∼= Z2, and
D4/D4

∼= {e}.

17. Let H be a subgroup of G, and consider the subset of G denoted by

NorG(H) = {g ∈ G : gH = Hg} = {g ∈ G : gHg−1 = H}.

Note: this set NorG(H) is often called the normalizer of H in G; it is the set of elements in G that “vote” in
favor of H’s normality.

(a) Prove that NorG(H) is a subgroup.

(b) What is the smallest that NorG(H) can be?

Solution: H

(c) What is the largest NorG(H) can be?

Solution: G

(d) When does the latter happens?
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Solution: NorG(H) = G if and only if H is normal.

18. Let G be the group whose Cayley diagram is shown below, and suppose e is the identity element. Consider the
subgroups A = ⟨a⟩ = {a, b, c, d, e} and J = ⟨j⟩ = {e, j, o, t}.

a b c d e

f g h i j

k l m n o

p q r s t

Carry out the following steps for both of the subgroups A and J . List the cosets element-wise.

(a) Write G as a disjoint union of the left cosets of A. Write G as a disjoint union of the left cosets of J .

(b) Write G as a disjoint union of the right cosets of A. Write G as a disjoint union of the right cosets of J .

(c) Use your coset computation to immediately compute the normalizer of the subgroup. Based on the
computation for the normalizer, what you can say about this subgroup?

Solution:

NorG(A) = G, which means A⊴G.

NorG(J) = J , which means that J is as “unnormal” as possible.

(d) If G/A is a group, perform the quotient process and draw the resulting Cayley diagram for G/A.

Solution: The quotient group G/A is isomorphic to Z4.

If G/J is a group, perform the quotient process and draw the resulting Cayley diagram for G/J .

Solution: Since J is not normal, the set A/J is not a group.

19. The center of a group G is the set

Z(G) = {z ∈ G | gz = zg, for all g ∈ G} = {z ∈ G | gzg−1 = z, for all g ∈ G} .

It is a subgroup of G.

a. Prove that Z(G) is normal in G by showing ghg−1 ∈ H for all h ∈ H, g ∈ G (“closed under conjugation”).
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Solution: Suppose g ∈ G. By Theorem 1, it is sufficient to show that gzg−1 ∈ Z(G) for all z ∈ Z(G).
But, if z ∈ Z(G), then gzg−1 = z ∈ Z(G) for all g ∈ G.

b. Compute the center of Z6.

Solution: Z6 is abelian, so the entire group is the center.

c. Compute the center of D4.

Solution: The center of D4 is ⟨R2⟩. Reason: the half circle rotation commutes with every reflection
(and every rotation). A different rotation does not commute with a reflection (for example, f). None
of the reflections commutes with R.

d. Compute the center of D5.

Solution: The center of D5 is the trivial group. Reason: None of the rotations commutes with f .
None of the reflections commutes with R.

e. Consider the group A3 of even permutations. Compute the center of A3.

Solution: A3 is abelian, and therefore the center of A3 is the entire group A3.

To see why A3 is abelian, notice that A3 is a cyclic group of order 3, since it can be generated by the
3-cycle (123).

Another way to see that A3 is abelian, is to compute its order which is 3!/2 = 3. We’ve seen that
every group of order 3 (or any prime number) is cyclic.

f. Consider the group An of even permutations, where n ≥ 4. Prove that (1 2 3) is not in the center of An

by producing another even permutation which does not commute with (1 2 3).

Solution: The element (2 3 4) works. (2 3 4)(1 2 3) = (12)(34)
(1 2 3)(2 3 4) = (13)(24)

g. Let n ≥ 4. Prove that (1 2)(3 4) is not in the center of An.

Solution: For example, you can show that the element (1 2 3) does not commute with (1 2)(3 4).

h. Compute the center of A4

Hint: A non-identity permutation in S4 is an even permutation if and only of its cycle notation is of the
form (ab)(cd) or (abc). (Make sure you can prove this!)

Do (ab)(cd) and (abc) commute?
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Solution: Answer: The answer is the trivial group.

Reason: The permutations (abc) and (ab)(cd) do not commute.

(abc)(ab)(cd) = (a)(bdc) and (ab)(cd)(abc) = (acd)(b).

i. Compute the center of S4.

Hint: Every non-identity permutation in S4 can be written in the form (ab), (abc), (abcd), and (ab)(cd).
Can you find a permutation that does not commute with (ab)? With (abcd)?

j. Compute the center of S2.

Solution: This group is abelian, so the center is the entire group.

k. Prove that “the center of a direct product is the direct product of the centers”, that is, Z(A × B) =
Z(A)× Z(B).

Solution: First, it is clear that Z(A×B) ⊃ Z(A)× Z(B).

To show that Z(A×B) ⊂ Z(A)×Z(B), let (z1, z2) ∈ Z(A×B). Then, by definition, (z1, z2)(g1, g2) =
(g1, g2)(z1, z2) for all g1 ∈ A, g2 ∈ B. This means that (z1g1, z2g2) = (g1z1, g2z2) for all g1 ∈ A, g2 ∈ B.
In other words, z1g1 = g1z1 and z2g2 = g2z2 for all g1 ∈ A, g2 ∈ B, so z1 ∈ Z(A) and z2 ∈ Z(B).

20. Notation/Definition: Let G be a group and x ∈ G.

• The conjugacy class of x is the set clG(x) := {gxg−1 | g ∈ G}.
• Let Z(G) be the set {z ∈ G | gz = zg for all g ∈ G}.

(a) Prove that clG(x) = {x} if and only if x ∈ Z(G).

(b) Suppose N is a normal subgroup of G. Prove that if x ∈ N , then clG(x) ⊂ N .

Solution: Let x ∈ N . Since N is normal in G, we have gxg−1 ∈ N for all g ∈ G. Thus, clG(x) :=
{gxg−1 : g ∈ G} ⊂ N .

21. You can use the following fact.

Proposition 1. For any σ ∈ Sn, we have σ (a1 a2 . . . ak) σ−1 = (σ(a1) σ(a2) . . . σ(ak) ).

(a) Let x be a k-cycle. Prove that y ∈ Sn is conjugate to x iff y is a k-cycle.

Solution: By Proposition 1, every pair of k-cycles are conjugate.

(b) Prove that (12) and (14) in S6 are conjugate by finding a permutation p ∈ S6 such that p−1(12)p = (14).

(c) List all permutations in S4 which are conjugate to (1234). Use the fact from part (a).

Solution: The answer is (1234), (1432), (1243), (1342), (1324), (1423). Explanation: The permutations
which are conjugate to (1234) in S4 are all the 4-cycles.
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Proposition 2. Let f : G1 → G2 be a homomorphism of groups. Then

(a) If e1 is the identity of G1, then f(e1) is the identity of G2.

(b) For any element g ∈ G1, f(g
−1) = [f(g)]−1.

(c) If H1 is a subgroup of G1, then f(H1) is a subgroup of G2.

(d) (i) If H2 is a subgroup of G2, then f−1(H2) = {g ∈ G1 : f(g) ∈ H2} is a subgroup of G1.
(ii) Furthermore, if H2 is normal in G2, then f−1(H2) is normal in G1.

22. Prove all parts of Proposition 2.

Solution: Proofs given under the Proposition 11.4 of Judson: http://abstract.ups.edu/aata/homomorph-section-group-homomorphisms.

html

23. (a) Let f : G1 → G2 be a homomorphism of groups. Prove that the kernel of f is a normal subgroup of G1.

Solution: Note that {e2} is a normal subgroup of the codomain G2. By part (d)(ii) of above,
f−1({e2}) is normal.

See also proof of Theorem 11.5 of Judson: http://abstract.ups.edu/aata/homomorph-section-group-homomorphisms.html which is
given in the paragraph between Proposition 11.4 and Theorem 11.5

(b) Let f : G → H be a group homomorphism. Show that if ker(f) is the trivial group {1G} then f is injective.

24. (a) Let f : G1 → G2 be a surjective homomorphism. Prove that, if N ◁G1, then f(N) is normal in G2.

Solution: We need to show that x2 f(N) x−1
2 ⊂ f(N) for all x2 ∈ G2.

Suppose x2 ∈ G2. Since f is surjective, there is x1 ∈ G1 such that f(x1) = x2. Note that every
element in f(N) can be written as f(n) for some n ∈ N . Then

x2 f(n) x
−1
2 = f(x1) f(n) f(x1)

−1

= f(x1) f(n) f(x
−1
1 )

= f(x1 n x−1
1 ) ∈ f(N)

since x1 nx−1
1 ∈ N (because N is normal in G1).

(b) If f : G1 → G2 is a homomorphism and N is a normal subgroup of G1, is it possible that f(N) is not
normal in G2? If so, give an example.

Solution: It is possible. Note that your example would require a non-surjective homormophism.

For example, consider f : Z2 → S3 defined by f(1) = (1 2) and let N = Z2. Then f(N) = ⟨(1 2)⟩,
which is not normal in S3.

To see that ⟨(1 2)⟩ is not normal in S3, check that the left coset and the right coset with coset
representative (1 2 3) are not equal.
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25. Let ϕ : (Z,+) → (Z,+) be the map given by ϕ(n) = 7n for n ∈ Z. Find the kernel and the image of ϕ.

Solution: The kernel of ϕ is the trivial subgroup {0}. The image of ϕ is 7Z, the subgroup of all integer
multiples of 7.

26. Consider the group homomorphism f : (R,+) → (C∗,×) defined by

f(θ) = cos θ + i sin θ.

(a) Find the kernel of f and the image of f .

Solution: The kernel is the subgroup {2πk : k ∈ Z} of (R,+). The image is the circle subgroup
{x ∈ C∗ : |x| = 1} = {a+ ib ∈ C∗ :

√
a2 + b2 = 1} of C∗.

(b) Give an isomorphism (bijective group homomorphism) from the kernel of f to (Z,+).

Solution: Let f send each 2πk ∈ ker f to k ∈ Z.

27. Let G be a group and let g be some element in G. Consider the group homomorphism f : Z → G given by

f(n) = gn.

(a) If the order of g is infinite, what is the kernel of f? Justify.

Solution: The kernel is the trivial subgroup {0} of Z.

(b) If the order of g is finite, say m, what is the kernel of f? Justify.

Solution: The kernel is the subgroup mZ = {mk : k ∈ Z} of Z.

28. True or false? Given two groups A and B, there exists a homomorphism from A to B. Prove your answer.

Solution: True, the map f : A → B where f(x) = eB for all x ∈ A (where eB is the identity element in
B) is a homomorphism. The kernel of this f is A, and the image of f is the trivial subgroup {eB} of B.

29. Given a homomorphism f : G → H define a relation ∼ on G by a ∼ b if f(a) = f(b) for a, b ∈ G.

(a) Show that this relation is an equivalence relation.

(b) Describe the equivalence classes. How many classes are there?

Solution: Check the three properties of being an equivalence relation.

Description of the equivalence classes: Each element h ∈ f(G) determines an equivalence class of the form
{g ∈ G | f(g) = h}. The equivalence classes are in bijection to the elements of f(G). There are as many
equivalence classes as the number of elements in f(G).

Extra information: If f is a surjection, then there is a bijection between the equivalence classes and H.
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