Definition 1. The *order* of a group element x, denoted by |x|, is the size of its orbit $\langle x \rangle$. Note: If the size of $\langle x \rangle$ is finite, then the order of x is the smallest positive integer k such that $x^k = e$. The *order* of a group G, denoted by |G|, is the number of elements in G.

Remark 2. Let J be a subset of a group G. To show that J is a subgroup of G, show the following:

- (a) J contains the identity of G
- (b) for all $x, y \in J$, the product xy is also in J (closure under the group operation)
- (c) for all $x \in J$, the inverse x^{-1} is also in J (closure under taking inverses)

Theorem 3. If a permutation σ can be expressed as the product of an even number of transpositions, then any other product of transpositions equaling σ must also contain an even number of transpositions. Similarly, if σ can be expressed as the product of an odd number of transpositions, then any other product of transpositions equaling σ must also contain an odd number of transpositions.

Proposition 4. For any $\sigma \in S_n$, we have σ $(a_1 \ a_2 \ \dots \ a_k) \ \sigma^{-1} = (\sigma(a_1) \ \sigma(a_2) \ \dots \ \sigma(a_k))$.

Definition 5. Let $H \leq G$. If $x \in G$, the set $xH := \{xh \mid h \in H\}$ is a *left coset* of H.

Lemma 6. Let H be a subgroup of G and let that $a, b \in G$. The following conditions are equivalent.

- (1) aH = bH
- (2) $aH \subset bH$
- (3) $b \in aH$

Theorem 7 (Lagrange's Theorem). If G is a finite group and $H \leq G$, then $[G:H] = \frac{|G|}{|H|}$. In particular, |H| divides |G|.

Proof. Suppose there are n left cosets of the subgroup H. Since they are all the same size and they partition G, we must have $|G| = \underbrace{|H| + \cdots + |H|}_{n \text{ copies}} = n |H|$.

Theorem 8. Let H be a subgroup of G. Then the following are all equivalent.

- (1) gH = Hg for all $g \in G$ (that is, H is normal in G) ("left cosets are right cosets")
- (2) $ghg^{-1} \in H$ for all $h \in H, g \in G$ ("closed under conjugation")
- (3) $gHg^{-1} = H$ for all $g \in G$ ("only one conjugate subgroup")

Definition 9. Let $H \leq G$. The set $G/H = \{xH : x \in G\}$ is the set of all left cosets of H in G. If $H \leq G$, then G/H forms a group (called the *quotient group of* G *by* H) under coset multiplication (xH)(yH) = (xy)H.

Definition 10. A group homomorphism is a function $\phi: (G_1, *) \to (G_2, \circ)$ satisfying

$$\phi(a * b) = \phi(a) \circ \phi(b),$$
 for all $a, b \in G_1$.

Proposition 11. Let $f: G_1 \to G_2$ be a homomorphism of groups. Then

- i. If e_1 is the identity of G_1 , then $f(e_1)$ is the identity of G_2 .
- ii. For any element $g \in G_1$, $f(g^{-1}) = [f(g)]^{-1}$.
- iii. If H_1 is a subgroup of G_1 , then $f(H_1)$ is a subgroup of G_2 .
- iv. If H_2 is a subgroup of G_2 , then $f^{-1}(H_2) = \{g \in G_1 : f(g) \in H_2\}$ is a subgroup of G_1 .