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Abstract. A box-ball system (BBS) is a dynamical system consisting of an infinite
strip of boxes, each of which is either empty or contains a ball labeled by a unique
positive integer. Beginning with some permutation on [n], we place the permutation
in consecutive boxes in the strip; and at each time step, we move each ball to the next
empty box to its right, starting with the ball labeled 1 and ending with n. Eventually,
the balls rearrange themselves into increasing blocks that continue to move together,
called solitons. The tableau that we get by stacking these solitons is called the soliton
decomposition of the BBS. We call a permutation “good” if its soliton decomposition
is a standard Young tableau. The goodness of a permutation is determined by its
Robinson-Schensted (RS) recording tableau, and so we call a standard tableau T “good”
if T is the recording tableau of a good permutation. In this project, we characterize good
tableaux T using pattern avoidance of T and the inverse of the column reading word
of T. We use this characterization to prove that the good tableaux of size n are counted
by the n-th Motzkin number. Along the way, we also show that the good permutations
are closed under consecutive pattern containment.

Keywords: Box-ball systems, Motzkin numbers, RSK tableaux, Pattern avoidance

1 Introduction

The n-th Motzkin number mn is the number of ways to draw nonintersecting chords
between n labeled points on a circle [9]. They count a variety of other objects (see [10,
A001006]), called Motzkin objects. The paper [2] describes fourteen of these objects and
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also explains how the Motzkin numbers are closely related to Catalan numbers. The
Motzkin numbers can be defined by the two-term recurrence relation

mn = mn−1 +
n−2

∑
k=0

mk mn−k−2 (1.1)

with m0 = 1, m1 = 1. The first few Motzkin numbers, for n = 0, 1, ..., 13, are

1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511, 41835.

1.1 Box-ball systems and their soliton decompositions

A box-ball system (BBS) is a dynamical system consisting of discrete time states. At each
time state, we have a BBS configuration: finitely many labeled balls in an infinite strip of
boxes, such that each box is either empty or contains one ball.

Let Sn denote the set of permutations on [n] = {1, 2, . . . , n}. At time t = 0, for some
w ∈ Sn, we have a BBS configuration given by the balls 1, 2, . . . , n placed in n consecutive
boxes following the one-line notation of w. One box-ball move is the process of letting
each ball jump to the nearest empty box to its right, beginning with the ball 1 and ending
with the ball n. Given a BBS configuration at time t, we reach the BBS configuration at
time t + 1 by applying one box-ball move.

For example, begin with w = 452361 ∈ S6. Then, we perform a box-ball move by first
moving 1 to the first open box on its right, then 2, and so on until we move 6:

t = 0 . . . 4 5 2 3 6 1 . . .

. . . 4 5 2 3 6 1 . . .

. . . 4 5 3 6 2 1 . . .

. . . 4 5 6 2 1 3 . . .

. . . 5 4 6 2 1 3 . . .

. . . 4 5 6 2 1 3 . . .

t = 1 . . . 4 5 2 1 3 6 . . .

We can then observe what happens to the permutation after several box-ball moves:

t = 0 . . . 4 5 2 3 6 1 . . .
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t = 1 . . . 4 5 2 1 3 6 . . .

t = 2 . . . 4 5 2 1 3 6 . . .

t = 3 . . . 4 2 5 1 3 6 . . .

t = 4 . . . 4 2 5 1 3 6 . . .

t = 5 . . . 4 2 5 1 3 6 . . .

In this example, in each box-ball move after t = 3, the increasing sequence 136 travels
three spaces to the right, the increasing pair 25 travels two spaces to the right, and the
singleton 4 travels one space to the right.

These increasing sequences are called solitons — maximal consecutive increasing
sequences of balls that are preserved by all future box-ball moves. After a finite number
of box-ball moves, every box-ball system will reach a steady state, decomposing into
solitons whose sizes are weakly increasing from left to right, that is, forming an integer
partition of n.

In this paper, we define a tableau to be an array of positive integers whose row sizes
are weakly decreasing (that is, the shape of a tableau is an integer partition). The soliton
decomposition of a box-ball system, called SD for short, is the tableau where the first row
is the rightmost soliton, the second row is the second-rightmost soliton, and so on. Note
that each row of this tableau is necessarily an increasing sequence, but the columns are
not necessarily increasing. The shape of SD is called the BBS soliton partition.

Given a permutation w, its soliton decomposition SD(w) is defined to be the soliton
decomposition of the box-ball system containing the configuration w. The permutation
w = 452361 in our example has soliton decomposition

SD(w) = 1 3 6
2 5
4

Our version of the box-ball system, known as the multicolor box-ball system, was
introduced in [12]. For more details, see the survey [7].

1.2 RS Correspondence and good tableaux

A tableau is called standard if its entries are the integers in [n], each appearing exactly
once, and if each row and each column is increasing. We will use a tool called the
Robinson–Schensted (RS) insertion algorithm to study the box-ball system. It is a well-known
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bijection
w 7→ (P(w), Q(w))

from Sn onto pairs of standard size-n tableaux of the same shape [11]. The shape of
P(w) is called the RS partition of w. In this paper, upright P, Q are used as functions,
whereas italicized P, Q denote specific tableaux. The tableau P(w) is called the insertion
tableau of w, and the tableau Q(w) is called the recording tableau of w. For details on this
algorithm, see for example the textbook [5, Section 4.1].

For example, if w = 452361 as in our running example, then

w = 452361 RS7→ P(w) = 1 3 6

2 5

4

, Q(w) = 1 2 5

3 4

6

Observe that in this example P(w) = SD(w). This property holds only for a special class
of permutations that are the focus of this paper.

Definition 1.1. A permutation w is called good if P(w) = SD(w) and bad otherwise.

In the 1970s, Greene showed that the RS partition of a permutation and its conjugate
record the numbers of disjoint unions of increasing and decreasing sequences of the
permutation([6, Theorem 3.1]). Lewis, Lyu, Pylyavskyy, and Sen recently showed that
the BBS soliton partition of a permutation and its conjugate record a localized version of
Greene’s theorem statistics [8, Lemma 3.5]; for a survey, see [3, Section 2.2]. The paper [3],
which heavily used Greene’s theorem and localized Greene’s theorem statistics, studied
properties of good vs. bad permutations in connection to their insertion tableaux. The
following allows us to determine the goodness of permutations from the shape of their
soliton decompositions.

Theorem 1.2 ([3, Theorem 4.2]). Let w be a permutation. Then SD(w) = P(w) iff SD(w)
is a standard tableau iff sh SD(w) = sh P(w).

A subsequent paper [1] showed that the recording tableau of a permutation determines
its goodness.

Theorem 1.3 ([1, Theorem A]). If v, w ∈ Sn with Q(v) = Q(w), then we have:

1. sh SD(v) = sh SD(w)

2. v is good iff w is good

In view of this result, it is natural for the authors of [1] to define the following.

Definition 1.4. A standard tableau T is good if Q(w) = T for some good permutation w.
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They also gave two conjectures, Conjectures 1.5 and 1.6.

Conjecture 1.5 ([1, Conjecture 8.5]). If a permutation w is good, then the standardization
of every consecutive subpattern of w is also good.

As a corollary to the machinery we constructed in Section 2, we are able to prove
that removing the largest entry from a good tableau results in another good tableau
(Proposition 2.15); this shows that good permutations are preserved under taking prefixes.
It was shown in [4] that good permutations are also preserved under taking suffixes. This
concludes the proof of Conjecture 1.5.

Conjecture 1.6 ([1, Conjecture 8.6]). The number of size-n good tableaux is equal to the
nth Motzkin number.

The main goal of the present paper is to sketch a proof of Conjecture 1.6. The rest
of this paper is organized as follows. We characterize good tableaux using pattern-
avoidance and a concept called ϕ-increasing in Section 2. In Section 3.1 we describe three
goodness-preserving operations called tilde multiplication, column bump, and row wrap,
which were inspired by [5, Section 1.1]. In Section 3.2, we recursively construct a class of
good tableaux GTn whose cardinality matches the two-term recurrence relation (1.1). We
prove in Theorem 3.12 that the set of all good tableaux of size n is equal to GTn, and the
cardinality of GTn is given in Corollary 3.13.

2 Characterization of good tableaux

Given a tableau T of size n, let sh T = λT := (λT
1 , λT

2 , . . . ), called the shape of T, be the
partition of n such that λT

i is the width of the i-th row of T. Let µT = (µT
1 , µT

2 , . . .) denote
the conjugate of λT. Thus, µT

i denotes the height of the i-th column of T.

2.1 Column superstandard words

In this section we discuss the notion of a column superstandard word associated to a
tableau; we will use it in the next section to characterize good tableaux.

Definition 2.1. A tableau of size n is called column superstandard if, when reading its
columns from top to bottom and left to right, we get the integers 1, 2, 3, . . . , n in this order.

Given a standard tableau Q, let CSS(Q) denote the unique column superstandard
tableau of shape sh Q. Let colQ

i denote the entries of the i-th column of CSS(Q), written
as a decreasing sequence. Note that µQ

i = len(colQ
i ). We will usually write colQ

i as coli
when Q is understood.

Given a standard tableau Q, we refer to the permutation π = RS−1 (CSS(Q), Q) as
the column superstandard word of Q.
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Example 2.2. Consider a standard tableau Q and the corresponding CSS(Q)

CSS(Q) = 1 8 14 19 21 22
2 9 15 20
3 10 16
4 11 17
5 12 18
6 13
7

Q = 1 2 3 6 7 11
4 5 10 22
8 9 14

12 13 17
15 16 21
18 20
19

Then col1 = 7654321, col2 = 13 12 11 10 9 8, col3 = 18 17 16 15 14, col4 = 20 19, col5 = 21,
col6 = 22, and the column superstandard word of Q is

π = RS−1(CSS(Q), Q)

= 7 13 18 6 12 20 21 5 11 17 22 4 10 16 3 9 15 2 1 8 14 19

Observe that each coli occurs as a subsequence of π, as we state below in Lemma 2.3.

Lemma 2.3. Let Q be a standard tableau and π be its column superstandard word. Then,
for each i, the (decreasing) sequence coli is a subsequence of π.

In light of this lemma, we can view coli as decreasing subsequences of the column
superstandard word of a given Q.

Furthermore, the positions in which the elements of coli appear in π are related to
the column of the corresponding entry in Q. In Example 2.2, the column superstandard
word π = RS−1(CSS(Q), Q) of Q is equal to
(

π(1) π(2) π(3) π(4) π(5) π(6) π(7) π(8) π(9) π(10) π(11) π(12) π(13) π(14) π(15) π(16) π(17) π(18) π(19) π(20) π(21) π(22)
7 13 18 6 12 20 21 5 11 17 22 4 10 16 3 9 15 2 1 8 14 19

)

Observe that the positions in which elements of col1 appear in π are 1, 4, 8, 12, 15, 18, 19
which are exactly the entries of column 1 of Q. Similarly, the positions in which elements
of col2 appear in π are 2, 5, 9, 13, 16, 20, which are the entries of column 2 of Q. This
relationship is established in Lemma 2.6.

Definition 2.4. The column reading word of a tableau T, denoted crw(T), is the word
obtained by reading the columns of T, read from bottom to top, from left to right.

It is well-known (see [5, Section 2.3]) that P(crw(T)) = T for any standard tableau T.
In Example 2.2, the column reading word for the tableau Q is

crw(Q) = 19 18 15 12 8 4 1 20 16 13 9 5 2 21 17 14 10 3 22 6 7 11,

and RS(crw(Q)) = (Q, CSS(Q)).
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Lemma 2.5. The column superstandard word of T is the inverse of the column reading
word crw(T) of T.

Lemma 2.6. Let π be the column superstandard word of a standard tableau Q. Let x, y
be such that π(x) = y. Then Q (r, c) = x iff colc(r) = y, i.e., we have

colc(r) = π (Q (r, c))

2.2 Characterizing goodness via column superstandard words

In this section we characterize good tableaux by analyzing partitions of particular sub-
words of the column superstandard word of a tableau.

Definition 2.7. Given a standard tableau Q, let π be its column superstandard word.
Viewing colQ

1 , colQ
2 , . . . as decreasing subsequences of π (see Lemma 2.3), for 1 ≤ i ≤

|columns of Q|, let
uQ

i = colQ
i t colQ

i+1 t . . . ,

that is, we let uQ
i be the subsequence of π consisting of the letters in colQ

i t colQ
i+1 t . . . .

Lemma 2.8. Let Q be a standard tableau and 1 ≤ i ≤ |columns of Q|. Then uQ
i (1) =

colQ
i (1).

In view of Lemma 2.8, we can define the following.

Definition 2.9. Let Q be a standard tableau and 1 ≤ i ≤ |columns of Q|. Let ui = uQ
i ,

coli = colQ
i , and µi = µQ

i . Define ϕ
ui
1 , ϕ

ui
2 , . . . , ϕ

ui
µi to be the consecutive subsequences of ui

starting with coli(1), coli(2), . . . , coli(µi), respectively, such that

ui = ϕ
ui
1 · ϕ

ui
2 · . . . · ϕui

µi

We say Q is ϕ-increasing if for each 1 ≤ i ≤ λQ
1 and each 1 ≤ j ≤ µQ

i , ϕ
ui
j is increasing.

Example 2.10. Consider π from Example 2.2. For i = 1,

π = u1 = 7 13 18︸ ︷︷ ︸
ϕ

u1
1

6 12 20 21︸ ︷︷ ︸
ϕ

u1
2

5 11 17 22︸ ︷︷ ︸
ϕ

u1
3

4 10 16︸ ︷︷ ︸
ϕ

u1
4

3 9 15︸ ︷︷ ︸
ϕ

u1
5

2︸︷︷︸
ϕ

u1
6

1 8 14 19︸ ︷︷ ︸
ϕ

u1
7

For i = 2 and 3, we have u2 = col2 t col3 . . . and u3 = col3 t col4 . . . as follows.

u2 = 13 18︸ ︷︷ ︸
ϕ

u2
1

12 20 21︸ ︷︷ ︸
ϕ

u2
2

11 17 22︸ ︷︷ ︸
ϕ

u2
3

10 16︸ ︷︷ ︸
ϕ

u2
4

9 15︸ ︷︷ ︸
ϕ

u2
5

8 14 19︸ ︷︷ ︸
ϕ

u2
6
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u3 = 18 20 21︸ ︷︷ ︸
ϕ

u3
1

17 22︸ ︷︷ ︸
ϕ

u3
2

16︸︷︷︸
ϕ

u3
3

15︸︷︷︸
ϕ

u3
4

14 19︸ ︷︷ ︸
ϕ

u3
5

and one can compute u4, u5 and u6 in a similar fashion.

Proposition 2.11. If Q is good, then Q is ϕ-increasing.

2.3 Classifying good tableaux via pattern avoidance

Definition 2.12 (Tableaux patterns). For a standard tableau Q we call an ordered collection
(jx, ix), (jy, iy), (jz, iz) of positions in Q an abc pattern if they are such that

jx = µQ
ix

, ix < iz ≤ iy, and Q(jx, ix) < Q(jy, iy) < Q(jz, iz)

For a standard tableau Q we call an ordered collection (jx, ix), (jy, iy), (jz, iz) of posi-
tions in Q an abcd pattern if they are such that

jx < µQ
ix

, ix < iz ≤ iy, and Q(jx, ix) < Q(jy, iy) < Q(jz, iz) < Q(jx + 1, ix)

We say that Q is abc-avoiding (resp. abcd-avoiding) if Q has no abc (resp. abcd) pattern.

Remark 2.13. Depicted below are two examples of Q tableaux with an abc pattern, letting
x = Q(jx, ix), y = Q(jy, iy), and z = Q(jz, iz). Note that the condition jx = µQ

ix
means that

x appears in a south-most position.

Q =
y

z

x

or Q =
y
z

x

In the next two tableaux, Q exhibits an abcd pattern. We write x = Q(jx, ix), y = Q(jy, iy),
z = Q(jz, iz), and w = Q(jx + 1, ix).

Q =
y

z
x
w

or Q =
y

z
x
w

Theorem 2.14 (Characterization of goodness). Let Q be a standard tableau. Then the
following are equivalent.
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A ∗ B

a b c d
e fA

y
x
u v w

B

Figure 1: Illustration for an alternative description of the product, using jeu de taquin

1. Q is good.

2. Q is ϕ-increasing.

3. Q has no abc or abcd patterns.

Proof (sketch). That (1) implies (2) is Proposition 2.11. The rest of the proof use pattern-
avoidance condition of Definition 2.12 and localized Greene’s statistics.

We can use Theorem 2.14 to help us prove Proposition 2.15, which is useful in the
inductive proof of the main theorem (Theorem 3.12) and also interesting for studying
consecutive permutation patterns.

Proposition 2.15. If Q is a good tableau of size n, then Q \ {n} is also a good tableau.

3 Proof sketch that good tableaux are Motzkin objects

3.1 Goodness-preserving operations on tableaux

The goal of this section is to define a goodness-preserving operation on tableaux for every
operation in the Motzkin recursion: column bump, row wrap, and tilde multiplication.

Definition 3.1 (Tilde product). The tilde product T1×̃T2 can be constructed as follows:

1. Start with the standard tableau T2, and let n2 denote the size of T2.

2. Let T1 denote the result of replacing every entry j in T1 with j + n2. For each i,
append the i-th column of T1 to (below) the i-th column of T2.

Remark 3.2. We chose the notation ×̃ because T1×̃T2 = T1× T2, where × is an associative
binary operation on the set of semistandard tableaux; this product can be constructed
using a process called jeu de taquin. Given two tableaux A and B, form a skew tableau
denoted A ∗ B by taking a rectangle of empty squares with the same number of columns
as A and the same number of rows as B and putting A below and B to the right of this
rectangle; see Figure 1. Then A× B is equal to the rectification of A ∗ B, a tableau obtained
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by performing a series of slides; see [5], Section 1.1 (page 11) and Section 1.2 (Claim 3).
In our case, since every entry in T2 is smaller than every entry in T1, the rectification of
T1 ∗ T2 can be achieved by sliding all cells of T2 to the left and each column of T1 up.

Definition 3.3. Let T denote the result of replacing every entry j in T with j− (m− 1),
where m is the minimum entry in T. Given a skew tableau S, let flushup(S) denote the
result of successively sliding each column of S upwards to be flush with the top row.

Example 3.4. If T1 = 1 2 5

3 4
, T2 = 1

2
, then T1 = 3 4 7

5 6
and T1×̃T2 = 1 4 7

2 6

3

5

.

If T = 4 5 8

6 7
, then we reduce all entries of T by 3 to construct T = 1 2 5

3 4
.

If S = 3

4

1 5

2

, then flushup(S) = 1 4 3

2 5
.

We now introduce two ways of obtaining a new standard tableau from a standard
tableau, called column bump and row wrap. Applying these operations to a good tableau
will result in good tableaux, as stated in Proposition 3.9.

Definition 3.5 (Column bump). Let T be a standard tableau of size n. We construct the
column bump of T, denoted bump(T), which is a new tableau of size n + 1, as follows:

• Let T′ be the result of increasing every entry in the first column of T by 1; and fixing
the entries in all other columns of T

• Prepend 1 to the top of the first column of T′.

We say T′ is column bumped if T′ is the column bump of a standard tableau.

Definition 3.6 (Row wrap). Let T be a standard tableau of size n. We construct the row
wrap of T, denoted wrap(T), which is a new tableau of size n + 2, as follows:

• Let T′ be the result of increasing every entry of T by 1;

• Prepend 1 to the beginning and append n + 2 to the end of the first row of T′.

A standard tableau T′ is called wrapped if T′ is the row wrap of a standard tableau.

Example 3.7. If T =
1 2 3
4 6
5

, then bump(T) =

1 3 4
2 7
5
6

, wrap(T) =
1 2 3 4 8
5 7
6

.

In each of wrap(T) and bump(T), an “edited copy” of the tableau T is enclosed in bold.
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Proposition 3.8. Suppose A1, A2, B1, B2 are standard tableaux such that A1×̃wrap(B1) =
A2×̃wrap(B2). Then A1 = A2, B1 = B2.

The following can be shown using Theorem 2.14.

Proposition 3.9. Suppose Q, T1, T2 are standard tableaux. Then we have the following.

1. Q is good iff bump(Q) is good iff wrap(Q) is good.

2. T1×̃T2 is good iff T1 and T2 are good.

3.2 Recursive construction of a class of good tableaux

Proposition 3.9 tells us that the operations of column bumping, wrapping, and taking tilde
products of good tableaux all preserve goodness. We use these operations to recursively
define a class of good tableaux that are counted by the Motzkin numbers.

Definition 3.10. Let GT0 = {∅} where ∅ denotes the empty tableau, and let GT1 =
{

1
}

.
Then, for n ≥ 2,

1. for each Q ∈ GTn−1, let
bump(Q) ∈ GTn

2. for 0 ≤ k ≤ n− 2, for each pair of Q1 ∈ GTk and Q2 ∈ GTn−k−2, let

Q1×̃wrap(Q2) ∈ GTn

The following lemma will be helpful in the proof of the main theorem.

Lemma 3.11. Let Q be a good tableau of size n and let Qn−1 denote Q \ {n}.

1. If Qn−1 is column bumped, then Q is also column bumped.

2. If Qn−1 is wrapped, then either Q = 1 ×̃Qn−1 or Q is wrapped.

3. If Qn−1 = A×̃B where B is wrapped and A is a nonempty standard tableau, then Q
is either wrapped or Q = flushup(Q \ B)×̃B.

Theorem 3.12 (Main Theorem). For n ∈ Z≥0, GTn is equal to the good tableaux of size n.

Proof (sketch). Induct on n, and apply Proposition 2.15, Proposition 3.9, and Lemma 3.11.

The good tableaux of size n are counted by the n-th Motzkin number.

Corollary 3.13. Let n ≥ 1. Then |GTn| = mn, the nth Motzkin number.

Bad involutions are counted by [10, A000085], the sequence counting involutions,
minus the Motzkin numbers.
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