Type *B c*-Birkhoff polytopes are order polytopes

Esther Banaian*1, Sunita Chepuri^{†2}, Emily Gunawan^{‡3}, and Jianping Pan^{§ 4}

Abstract. In a previous work, we defined (type A) c-Birkhoff polytopes and showed that they were unimodularly equivalent to order polytopes. In this extended abstract we answer the question: what about type B?

Keywords: Birkhoff polytope, Order polytope, Heap, Cambrian lattice, c-singleton

1 Introduction

Given a finite poset H, the order polytope $\mathcal{O}(H)$ is a well-understood polytope in $\mathbb{R}^{|H|}$ [11]. Its vertices are the indicator vectors of the order ideals of H, its dimension is |H|, and its normalized volume is the number of linear extensions of H.

On the other hand, let S_m denote the symmetric group on $[m] = \{1, ..., m\}$. Given a permutation $w \in S_m$, let X(w) be the corresponding permutation matrix, i.e., with 1's in row i and column w(i) for all $i \in [m]$ and 0's everywhere else. The *Birkhoff polytope* for S_m is the convex hull of all permutation matrices [2].

In [4], Davis and Sagan studied the convex hull of 132 and 312 avoiding permutation matrices, a subpolytope of the Birkhoff polytope. They proved that the normalized volume of this polytope is the number of longest chains in the type A_{m-1} Tamari lattice. Inspired by their work and the fact that the 132 and 312 avoiding permutations are exactly the c-singletons for the Coxeter element $c = (12 \dots m)$ written in cycle notation, in [1] we defined a (type A) Birkhoff subpolytope Birk(c) to be the convex hull of permutation matrices corresponding to c-singletons for any Coxeter element c. We then proved that Birk(c) is integrally equivalent to the order polytope of the heap of the longest c-sorting word of S_m . A consequence of this result is that the normalized volume of Birk(c) is the number of longest (length $\binom{m}{2}$) chains in the (type A_{m-1}) c-Cambrian lattice [9].

In the present paper, we turn our attention to the Coxeter group B_n which is realized as the group of permutations v on $\pm[n] = \{-n, \ldots, -1, 1, \ldots, n\}$ satisfying $v(-k) = \{-n, \ldots, -1, 1, \ldots, n\}$

¹Dept. of Mathematics, University of California, Riverside, Riverside, CA, USA

²Dept. of Mathematics and Computer Science, University of Puget Sound, Tacoma, WA, USA

³Dept. of Mathematics and Statistics, University of Massachusetts Lowell, Lowell, MA, USA

⁴School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA

^{*}esther.banaian@ucr.edu

[†]schepuri@pugetsound.edu

[‡]emily_gunawan@uml.edu

[§]jianping.pan@asu.edu

-v(k); such permutations are called *signed permutations* on [n]. We can naturally embed each $v \in B_n$ into a permutation $\eta(v)$ in S_{2n} by identifying $-n, \ldots, -1, 1, \ldots, n$ with $1, \ldots, n, n+1, \ldots, 2n$, in this order.

For each Coxeter element c^B in B_n , we define a (type B) Birkhoff subpolytope.

Definition 1.1 (c^B -Birkhoff polytope). Given a Coxeter element $c^B \in B_n$, let $Birk(c^B)$ be the convex hull of

$$\{X(\eta(v)) \mid v \text{ is a } c^B\text{-singleton in } B_n\}.$$

The main goal of this paper is to give a proof sketch that $Birk(c^B)$ is integrally equivalent to the order polytope of the heap of the longest c^B -sorting word of B_n (Theorem 3.13). As in the type A work [1], a consequence of this result is that the normalized volume of $Birk(c^B)$ is the number of longest (length n^2) chains in the (type B_n) c^B -Cambrian lattice.

2 Background and notation

A Coxeter system (W, S) is a Coxeter group W together with a set S of generators for W called simple reflections subject to the relations $s^2 = e$ for all $s \in S$ and the braid relations $(st)^{m(s,t)} = e$ for all s,t such that $m(s,t) \leq \infty$. For $s,t \in S$ where m(s,t) = 2, we have st = ts, which we call a commutation relation. An application of a commutation relation to a product of simple reflections is called a commutation move. A Coxeter element c in W is a product of all simple reflections in any order, where each reflection appears exactly once.

Given $w \in W$, the minimum number of simple reflections among all expressions for w as a product of simple reflections is called the *length* of w, and is denoted by $\ell(w)$. A reduced decomposition of w is an expression $w = s_{i_1} \cdots s_{i_{\ell(w)}}$ realizing $\ell(w)$.

2.1 Type A_n and B_n permutations

This paper focuses on the Coxeter groups of type A and B, which we denote by A_n and B_n . We now review the combinatorial realizations of these groups in terms of permutations and signed permutations. For more details, see for example [3]. The set of simple reflections in A_n are denoted s_1^A, \ldots, s_n^A ; and the set of simple reflections in B_n are denoted $s_0^B, s_1^B, \ldots, s_{n-1}^B$. We sometimes write s_k when W is understood.

Let A_n denote the symmetric group on n+1 elements. We can represent a permutation $w \in A_n$ in *one-line notation* as $w = w(1)w(2)\dots w(n+1)$. The simple reflections for A_n are *adjacent transpositions* $s_k^A = (k \quad k+1)$ for $1 \le k \le n$. Distinct simple reflections satisfy commutation relation $s_i^A s_j^A = s_j^A s_i^A$ if and only if |i-j| > 1. The longest element of A_n is the permutation $w_0^A = (n+1)n \dots 321$ and $\ell(w_0^A) = \binom{n+1}{2}$.

Let B_n be the group of signed permutations on $\pm [n] = \{-n, \ldots, -2, -1, 1, 2, \ldots, n\}$ which satisfies w(-k) = -w(k) for all $k \in [n]$. We write these permutations in

full one-line notation as $w(-n)w(-n+1)\dots w(-1)w(1)w(2)\dots w(n)$ or in window notation as $w(1)w(2)\dots w(n)$. The simple reflections for B_n are $s_0^B=(-1 \ 1)$ and $s_k^B=(-k-1 \ -k)(k \ k+1)$ for $k=1,\dots,n-1$. As in A_n , distinct simple reflections in B_n satisfy commutation relation $s_i^Bs_j^B=s_j^Bs_i^B$ if and only if |i-j|>1. The longest element of B_n is the signed permutation $w_0^B=(-1)(-2)\dots(-n)$ in window notation and $\ell(w_0^B)=n^2$.

To simplify notation, we refer to a reduced decomposition $s_{i_1} \cdots s_{i_{\ell(w)}}$ of w in A_n or B_n via its *reduced word* $\left[i_1 \cdots i_{\ell(w)}\right]$. Given a reduced word $\left[u\right]$, the equivalence class consisting of all words that can be obtained from $\left[u\right]$ by a sequence of commutation moves is called the *commutation class* of $\left[u\right]$.

2.2 Heaps

We review the classical theory of heaps [13], following the exposition in [12].

Definition 2.1. Let W be the Coxeter group A_n or B_n . Given a reduced word $[a] = [a_1 \cdots a_\ell]$ of an element in W, consider the partial order \leq on the set $\{1, \ldots, \ell\}$ obtained via the transitive closure of the relations

$$x \prec y$$

for x < y such that $|a_x - a_y| \le 1$. For each $1 \le x \le \ell$, the *label* of the poset element x is a_x . This labeled poset is called the *heap* for [a], denoted $\mathsf{Heap}([a])$.

The Hasse diagram for this poset with elements $\{1, ..., \ell\}$ replaced by their labels is called the *heap diagram* for [a]. In our figures, we represent each label j by the simple reflection s_j for clarity.

- **Example 2.2.** 1. The first two pictures in Figure 1 show the Hasse diagram and heap diagram of Heap([aaaa]) for [a] = [7145362]. The elements of the underlying poset are $\{1, 2, ..., 28\}$, and the possible labels are $\{1, 2, ..., 7\}$.
 - 2. The last two pictures in Figure 1 show the Hasse diagram and heap diagram of Heap([bbbb]) for [b] = [3012]. The elements of the underlying poset are $\{1, 2, ..., 16\}$, and the possible labels are $\{0, 1, 2, 3\}$.

We can understand the commutation class of [a] by looking at linear extensions of Heap([a]).

Definition 2.3. A *linear extension* $\pi = \pi(1) \cdots \pi(\ell)$ of a partial order \leq on $\{1, \dots, \ell\}$ is a total order on the poset elements that is consistent with the structure of the poset, that is, $x \prec y$ implies $\pi(x) < \pi(y)$. Given a reduced word $[a] = [a_1 \cdots a_\ell]$, a *labeled*

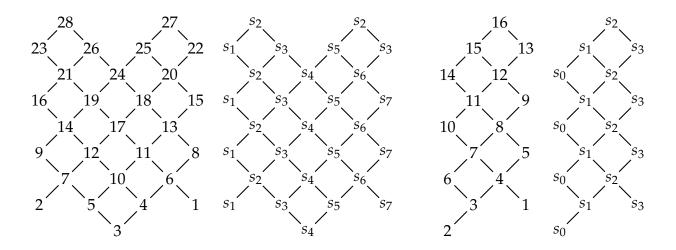


Figure 1: From left to right: Hasse diagram of the underlying poset of Heap([aaaa]) for [a] = [7145362] in A_7 ; heap diagram of Heap([aaaa]); Hasse diagram of the underlying poset of Heap([bbbb]) for [b] = [3012] in B_4 ; heap diagram of Heap([bbbb])

linear extension of Heap([a]) is a word $\left[a_{\pi(1)}\cdots a_{\pi(\ell)}\right]$ where $\pi=\pi(1)\cdots\pi(\ell)$ is a linear extension of Heap([a]).

Proposition 2.4. [12, Proof of Proposition 2.2] Given a reduced word [a], the set of labeled linear extensions of the heap for [a] is the commutation class of [a].

2.3 The heap of the longest *c*-sorting word in A_n and B_n

The notion of *c*-sorting words was introduced by Reading in [10]. Fix a reduced word $[a_1a_2...a_n]$ for a Coxeter element *c*, and define an infinite word

$$c^{\infty} := a_1 a_2 \dots a_n \mid a_1 a_2 \dots a_n \mid \cdots$$

The *c*-sorting word of $w \in W$ is the lexicographically first (as a sequence of positions in c^{∞}) subword of c^{∞} that is a reduced word for w. Denote this word by $\text{sort}_c(w)$. If a word $[u] = [u_1 \dots u_\ell]$ is the *c*-sorting word of an element in W, we refer to [u] as a *c*-sorting word.

In this paper, we are interested in the heap diagram of $sort_c(w_0)$ for A_n and B_n . The following is proven in Sections 6.2 and 6.3 of [5], for types A and B, respectively.

Lemma 2.5. 1. The *c*-sorting word for w_0 in A_n is a concatenation of nonempty subwords of c, $\text{sort}_c(w_0) = \begin{bmatrix} K_1 \mid K_2 \mid \cdots \mid K_p \end{bmatrix}$ where $K_1 \supseteq K_2 \supseteq \cdots \supseteq K_p$ as sets. For a construction of the heap diagram of $\text{sort}_c(w_0)$ in type A, see for example [1, Algorithm 6.1].

2. The *c*-sorting word of w_0 in B_n is c^n , so, to draw the heap of c^n , we simply stack n "layers" of Heap(c).

See Figure 1 for the heap diagrams of $sort_c(w_0)$ for c = [7145362] in A_7 and for c = [3012] in B_4 .

2.4 *c*-singleton permutations

In [7], Hohlweg, Lange, and Thomas introduced the notion of c-singletons; following the survey [6], we will adopt the definition that $w \in W$ is a c-singleton if and only if some reduced word of w is a prefix of a word in the commutation class of $\operatorname{sort}_c(w_0)$. We will also use the following characterization of c-singletons, which follows from Proposition 2.4.

Lemma 2.6. An element $w \in W$ is a *c*-singleton if and only if there exists a reduced word [u] of w and an order ideal I of Heap(sort_c(w_0)) such that I = Heap([u]).

The *c*-singletons form a distributive sublattice of the right weak order on W, denoted $\mathcal{L}(c\text{-singletons})$ [7]. For a poset H, let J(H) denote the lattice of order ideals of H. The following are due to [8, Proposition 3] and [1, Section 2].

Proposition 2.7. Let $[u] = \left[u_1 u_2 \dots u_{\ell(w_0)}\right]$ denote $\mathsf{sort}_{\mathsf{c}}(w_0)$, and consider the labeled poset $H = \mathsf{Heap}([u])$ on $\{1, 2, \dots, \ell(w_0)\}$, following Definition 2.1. Given an order ideal I of H, let $[u]_I = [u_i]_{u \in I}$ denote the subword of [u] at positions I.

- 1. The word $[u]_I$ is a *c*-sorting word.
- 2. The map

Perm:
$$J(H) \to \mathcal{L}(\text{c-singletons})$$

 $I \mapsto [u]_I$

is a poset isomorphism, and the inverse map of Perm is

$$f: \mathcal{L}(ext{c-singletons}) o J(H)$$

$$w \mapsto \mathsf{Heap}(\mathsf{sort}_{\mathsf{c}}(w))$$

A *barring* of a set Z of integers is a partition of Z into two sets \underline{Z} and \overline{Z} . If $d \in \underline{Z}$ (resp. $u \in \overline{Z}$), we call d a *lower-barred number* (resp. we call u a *upper-barred number*) and sometimes emphasize this by writing \underline{d} (resp. \overline{u}).

Let c be a Coxeter element in W. Let $Z = [2, n] = \{2, 3, ..., n\}$ if $W = A_n$ and $Z = \pm [1, n-1] = \{-(n-1), ..., -2, -1, 1, 2, ..., n-1\}$ if $W = B_n$. First, the barring of [2, n] and [1, n-1] in types A and B respectively is defined as follows: if s_i appears

after s_{i-1} in any reduced word of c, then i is a lower-barred number; otherwise i is an upper-barred number. For $W = B_n$, the barring of [1, n-1] is extended to a barring of $Z = \pm [1, n-1]$ by specifying that the barring of -i is opposite the barring of i.

We denote the lower-barred numbers by $d_1 < ... < d_r$ and the upper-barred numbers by $u_1 < ... < u_s$.

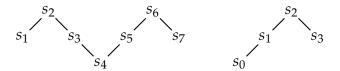
Remark 2.8 ([10, Section 3]). We can write a Coxeter element c of A_n as a single cycle of length n+1 of the form

$$c = (1 d_1 \dots d_r (n+1) \overline{u_s} \dots \overline{u_1})$$

and the Coxeter element c of B_n as a single cycle of length 2n of the form

$$c = (-n \ d_1 \ \dots \ \underline{d_r} \ n \ \overline{u_s} \ \dots \ \overline{u_1}).$$

Example 2.9. Consider the Coxeter elements $c^A = s_7^A s_1^A s_4^A s_5^A s_3^A s_6^A s_2^A$ in A_7 and $c^B = s_3^B s_0^B s_1^B s_2^B$ in B_4 as in Figure 1. Their heap diagrams are as follows.



Then $c^A = (1 \ \underline{2} \ \underline{5} \ \underline{6} \ 8 \ \overline{7} \ \overline{4} \ \overline{3})$ and $c^B = (-4 \ \underline{-3} \ \underline{1} \ \underline{2} \ 4 \ \overline{3} \ \overline{-1} \ \overline{-2})$.

3 Type *B c*-Birkhoff polytopes

For the rest of the paper, we will consider the Coxeter groups B_n and A_{2n-1} . The two groups are related by an "unfolding" injective homomorphism $\eta: B_n \to A_{2n-1}$, determined by

$$\eta(s_i^B) = \begin{cases} s_n^A & \text{if } i = 0\\ s_{n+i}^A s_{n-i}^A & \text{if } i > 0 \end{cases}$$

for each simple reflection s_i^B of B_n .

Let c^B denote a Coxeter element of B_n and let $c^A = \eta(c^B)$; note that c^A is a Coxeter element of A_{2n-1} .

Remark 3.1. The homomorphism η can be alternatively defined as follows. Let $v \in B_n$, and let $w = \eta(v) \in A_{2n-1} = S_{2n}$. Then, for k = 1, ..., n, we have

$$w(n+k) = v(k) + n$$
 and $w(n+1-k) = -v(k) + n + 1$ if $v(k) > 0$
 $w(n+k) = v(k) + n + 1$ and $w(n+1-k) = -v(k) + n$ if $v(k) < 0$

For example, let $v = (-1) (-4) 3 (-2) \in B_4$ in window notation, and let $w = \eta(v)$; then w = 62854173. A second example is $\eta(c^B) = c^A$, where c^A and c^B are as in Example 2.9; the symmetry we see in the barring of [2,7] in this example holds in general:

Lemma 3.2. In the barring of [2, 2n-1] associated to the Coxeter element $\eta(c^B) \in A_{2n-1}$, the integer i is lower-barred if and only if 2n+1-i is upper-barred.

Define the type B_n c^B -Birkhoff polytope, denoted $Birk(c^B)$, to be the convex hull of

$$\{X(\eta(v)) \mid v \in B_n \text{ is a } c^B\text{-singleton}\}.$$

The vertices of $Birk(c^B)$ are precisely the permutation matrices $X(\eta(v))$ where v is a c^B -singleton. Let $Aff(c^A)$ (resp. $Aff(c^B)$) denote the affine hull of the vertices of $Birk(c^A)$ (resp. $Birk(c^B)$).

3.1 Reflection-invariant order ideals and rotation-invariant matrices

Let $H^B = \mathsf{Heap}(\mathsf{sort}_{c^B}(w_0^B))$ and $H^A = \mathsf{Heap}(\mathsf{sort}_{c^A}(w_0^A))$.

Lemma 3.3. H^A has reflectional symmetry about the vertical *y*-axis; the right side of H^A has the same underlying poset as H^B .

See Figure 1 for the heap diagrams of H^A and H^B where $c^B = s_3^B s_0^B s_1^B s_2^B$ and $c^A = \eta(c^B) = s_7^A s_1^A s_4^A s_5^A s_3^A s_6^A s_2^A$. This example illustrates Lemma 3.3. Let $\rho: H^A \to H^A$ be the "reflection" map which sends every vertex in the heap

Let $\rho: H^A \to H^A$ be the "reflection" map which sends every vertex in the heap diagram of H^A to its reflection about the *y*-axis. This induces a map $J(H^A) \to J(H^A)$ which we will also call ρ . We say that $I \in J(H^A)$ is *reflection-invariant* if $\rho(I) = I$. Let $J(H^A)^F$ denote the set of reflection-invariant order ideals in $J(H^A)$.

By Lemma 3.3 we can view H^B as the subposet on the right side of H^A . This allows us to define a bijection $\alpha: J(H^B) \to J(H^A)^F$ as follows: if I^v is an order ideal of H^B , let $\alpha(I^v)$ be the order ideal of H^A that contains elements on the right side of H^A corresponding to the elements of I^v as well as the image of these elements under ρ . The inverse map $\beta: J(H^A)^F \to J(H^B)$ ignores the elements of $I^w \in J(H^A)^F$ labeled $1, \ldots, n-1$ and identifies the rest with the corresponding elements in H^B .

Consider the poset isomorphisms, Perm and f, defined in Proposition 2.7. To distinguish between type A and type B versions of these maps, we will sometimes use a superscript A or B.

Lemma 3.4. 1. If v is a c^B -singleton, then $\eta(v)$ is a c^A -singleton.

2. If $I^w \in J(H^A)$ is reflection-invariant and $w = \operatorname{Perm}^A(I^w)$, then $w = \eta(v)$ for some c^B -singleton v. Conversely, if v is a c^B -singleton, then $f^A(\eta(v))$ is reflection-invariant.

Proof. (1) Let v be a c^B -singleton and let I^v denote the order ideal $f^B(v)$ of H^B . Define I^w to be the order ideal $\alpha(I^v)$ of H^A . Then by Proposition 2.7 there is a c^A -singleton w where $w = \operatorname{Perm}^A(I^w)$. By construction, $w = \eta(v)$.

(2) Suppose I^w is a reflection-invariant order ideal of H^A . Define I^v to be the order ideal $\beta(I^w)$ of H^B . Then by Proposition 2.7 there is a c^B -singleton v where $v = \operatorname{Perm}^B(I^v)$. By construction, $w = \eta(v)$.

Conversely, if v is a c^B -singleton, then $v = \operatorname{Perm}(I^v)$ for some $I^v \in J(H^B)$. By construction $\eta(v) = \operatorname{Perm}^A(\alpha(I^v))$. Since $\alpha(I^v)$ is reflection-invariant and since f^A and Perm^A are inverse maps, the claim follows.

It follows from Lemma 3.4(1) that $Birk(c^B)$ is a subpolytope of the c^A -Birkhoff polytope $Birk(c^A)$ and that $Aff(c^B)$ is an affine subspace of $Aff(c^A)$.

Definition 3.5. Let $w \in A_{m-1} = S_m$. The *reverse* of w, denoted w^{rev} , is the result of writing w in one-line notation backwards; that is, $w^{\text{rev}}(i) = w(m+1-i)$. The *complement* of w, denoted w^{comp} , is the result of replacing every entry i in the one-line notation of w with m+1-i. The *reverse-complement* of w, denoted w^{revcomp} , is the result of taking the complement of the reverse of w; that is, $w^{\text{revcomp}}(i) = m+1-w(m+1-i)$.

The permutation matrix $X(w^{\mathrm{rev}})$ is the result of reflecting the permutation matrix X(w) with respect to a horizontal line, while $X(w^{\mathrm{comp}})$ is the result of reflecting X(w) with respect to a vertical line. The composition of these two actions is the 180 degree rotation, and thus the 180 degree rotation of the permutation matrix $X(w^{\mathrm{revcomp}})$ of the reverse-complement of w.

As a consequence, given a permutation $w \in S_{2n}$, its permutation matrix X(w) is invariant under 180 degree rotation if and only if w is equal to its reverse-complement, that is, for all $1 \le i \le 2n$, $w(i) = w^{\text{rev}}(i) = 2n + 1 - w(2n + 1 - i)$. Equivalently, X(w) is invariant under 180 degree rotation if and only if w satisfies

$$w(n+k) + w(n+1-k) = 2n+1$$
(3.1)

for all $k = 1, \ldots, n$.

Let A_{2n-1}^{180} denote $\{w \in A_{2n-1} \mid w \text{ satisfies (3.1)}\}$, that is, A_{2n-1}^{180} is the set of permutations in A_{2n-1} whose permutation matrices are invariant under 180 degree rotation. Remark 3.1 implies the following.

Lemma 3.6. The image $\eta(B_n)$ is equal to A_{2n-1}^{180} .

3.2 Type *B* lattice-preserving projection

In [1, Section 5], we defined a projection Π_{c^A} from the space of $(2n) \times (2n)$ \mathbb{R} -valued matrices to $\mathbb{R}^{\binom{2n}{2}}$ by choosing exactly $\binom{2n}{2}$ positions from a matrix X; the positions are

determined by the Coxeter element c^A . We proved in [1, Theorem 5.9] that Π_{c^A} is injective on Aff (c^A) .

Proposition 3.7 (Zero relations [1, Proposition 4.4]). If $X \in Aff(c^A)$, then X satisfies the following.

- For each upper-barred u, we have X(i, u) = 0 for all $1 \le i \le \min(u 1, n + 1 u)$.
- For each lower-barred d, X(i,d) = 0 for all $\max(d+1,n+3-d) \le i \le n+1$.

The projection Π_{c^A} never includes positions on the main diagonal or positions whose entries are guaranteed to be zero for $X \in \mathsf{Aff}(c^A)$ by Proposition 3.7. When positions below the main diagonal are included, these positions must come from the bottom half of X.

In the following, we view the projection Π_{c^A} as a subset of $[2n] \times [2n]$.

Lemma 3.8. The map Π_{c^A} chooses n^2 positions from the top half (rows 1 through n) of a matrix X.

Proof. Let $X \in \mathsf{Aff}(c^A)$. The subset of entries taken by Π_{c^A} in the top half of X are exactly those above the main diagonal and not in a spot which is guaranteed to be 0 (as described in Proposition 3.7). The number of entries above the main diagonal and in the top half are $(2n-1)+(2n-2)+\cdots+n=n^2+\binom{n}{2}$. The total number of entries in X guaranteed to be 0 is $2\binom{n}{2}$, and Lemma 3.2 implies that exactly half of these will be above the main diagonal. Therefore, Π_{c^A} restricted to $[n] \times [2n]$ has exactly n^2 entries. □

It follows from Lemma 3.6 that, for each $v \in B_n$, the top half of $X(\eta(v))$ determines its bottom half. In view of this fact and Lemma 3.8, we define

$$\Pi_{c^B}: \{(2n) \times (2n) \ \mathbb{R}\text{-valued matrices}\} \to \mathbb{R}^{n^2}$$

to be the result of restricting Π_{c^A} to $[n] \times [2n]$.

Example 3.9. Consider $c^A = (1 \ \underline{2} \ \underline{5} \ \underline{6} \ 8 \ \overline{7} \ \overline{4} \ \overline{3})$ and $c^B = (-4 \ \underline{-3} \ \underline{1} \ \underline{2} \ 4 \ \overline{3} \ \overline{-1} \ \overline{-2})$ from Example 2.9. Figure 2 shows the projection Π_{c^A} and Π_{c^B} (first two pictures). It also shows the permutation matrix for $\eta(v) \in S_8$ for the c^B -singleton $v = (1 \ 4 \ 3 \ -1 \ -4 \ -3)(2 \ -2)$ with circles around entries recorded by Π_{c^B} (third picture).

Proposition 3.10. The map Π_{c^B} is a linear transformation which is injective on Aff(c^B) and sends integral points to integral points.

Proof. Consider $X \in \text{Aff}(c^B)$. The first k positions in row k for $1 \le k \le n$ are not guaranteed to be zero by Proposition 3.7 and also not chosen by Π_{c^B} . The other entries in the row are either guaranteed to be zero by Proposition 3.7 or are chosen by Π_{c^B} .

	28	Χ	Χ	24	19	X	12		16	Χ	Χ	12	8	Χ	4	0	1	0	0	0	0	0	$\boxed{0}$
		Χ	Χ	25	20	6	13			Χ	Χ	13	9	1	5	0	0	0	0	1	0	1	0
			X	26	21	7	14				Χ	14	10	2	6	0	0	0	0	0	1	0	0
				27	22	8	15					15	11	3	7	1	0	0	0	0	0	0	0
					23	9	16									0	0	0	0	0	0	0	1
	3			X		10	17					X				0	0	1	0	0	0	0	0
4	1			X	X		18					Χ	X			0	0	0	1	0	0	0	0
2	Χ	5	11	Χ	Χ				Χ			X	X			0	0	0	0	0	0	1	0

Figure 2: First two pictures: Projections Π_{c^A} and Π_{c^B} of Example 3.9. Red X's indicate the entries which must be zero by Proposition 3.7. Numbers indicate entries chosen by Π_{c^A} and Π_{c^B} , respectively, in order. Third picture: The permutation matrix for $\eta(v) \in S_8$ for $v = \begin{pmatrix} 1 & 4 & 3 & -1 & -4 & -3 \end{pmatrix} \begin{pmatrix} 2 & -2 \end{pmatrix}$, circling the entries recorded by Π_{c^B} .

Since $X \in \mathsf{Aff}(c^B)$, X is also in $\mathsf{Aff}(c^A)$. Thus, [1, Theorem 4.11 "Top sum relations"] tells us that there are k relations involving entries of rows 1 through k. Working from k = 1 to k = n, we can use these relations, the values of the entries in rows above row k, and the values of the entries in positions k + 1 through 2n of row k to determine the first k entries of the kth row (see the proof of [1, Theorem 5.9]). This shows that Π_{c^B} determines the entire top half of X. By Lemma 3.6, we know that X is invariant under 180 degree rotation, and thus the top half of X determines the bottom half of X.

3.3 Proof sketch of main theorem

In this section, we will prove our main theorem using a composition of several maps. The maps we will define and use throughout the section are depicted in the following commutative diagram.

$$\begin{array}{ccc}
\mathsf{Aff}(c^A) & \xrightarrow{\Pi_{c^A}} & \Pi_{c^A}(\mathsf{Aff}(c^A)) & \xrightarrow{\mathcal{U}_{c^A}} & \mathbb{R}^{\binom{2n}{2}} \\
\downarrow^{\iota} & & \downarrow^{P} & & \downarrow^{P} \\
\mathsf{Aff}(c^B) & \xrightarrow{\Pi_{c^B}} & \Pi_{c^B}(\mathsf{Aff}(c^B)) & \xrightarrow{\mathcal{U}_{c^B}} & \mathbb{R}^{n^2}
\end{array} \tag{3.2}$$

We first define the map L. Since Π_{c^B} is injective, if we restrict its codomain to be $\Pi_{c^B}(\mathsf{Aff}(c^B))$ then it is bijective. Thus it has an inverse $\Pi_{c^B}^{-1}:\Pi_{c^B}(\mathsf{Aff}(c^B))\to \mathsf{Aff}(c^B)$. Define $L=\Pi_{c^A}\circ\iota\circ\Pi_{c^B}^{-1}$. Since L is a composition of injective functions, L is injective. Recall the map f from Proposition 2.7 and let o(I) denote the indicator vector of

Recall the map f from Proposition 2.7 and let o(I) denote the indicator vector of an order ideal I of a poset. In the proof of our main theorem in [1], we showed the existence of a unimodular transformation \mathcal{U}_{c^A} such that, for all c^A -singletons w,

 $(\mathcal{U}_{c^A} \circ \Pi_{c^A})(X(w)) = o(f^A(w))$. Since L maps from $\Pi_{c^B}(\mathsf{Aff}(c^B))$ to $\Pi_{c^A}(\mathsf{Aff}(c^A))$, we can consider the composition $\mathcal{U}_{c^A} \circ L$.

Let $Aff(J(H^A))$ denote the affine hull of indicator vectors of order ideals of H^A and define $Aff(J(H^A)^F)$ accordingly.

Lemma 3.11. The image $(\mathcal{U}_{c^A} \circ L)(\Pi_{c^B}(\mathsf{Aff}(c^B)))$ is equal to $\mathsf{Aff}(J(H^A)^F)$.

Proof. Given a c^A -singleton w, from [1, Theorem 6.21], $\mathcal{U}_{c^A} \circ \Pi_{c^A}(X(w)) = o(f^A(w))$. Given a c^B -singleton v, we know from Lemma 3.4(2) that the order ideal $f^A(\eta(v))$ is reflection-invariant. Therefore, applying $\mathcal{U}_{c^A} \circ L \circ \Pi_{c^B} = \mathcal{U}_{c^A} \circ \Pi_{c^A} \circ \iota$ to the set

$${X(\eta(v)) \mid v \text{ is a } c^B\text{-singleton}}$$

produces the set of indicator vectors of the order ideals in $J(H^A)^F$, and the claim follows.

Now we will define the map P. In [1, Section 6.1], we defined a specific linear extension, π_A , of H^A coming from the construction of the "diagonal reading word". There is an induced linear extension on H^B , π_B , viewing H^B as a subposet of H^A . Let $P: \mathbb{R}^{\binom{2n}{2}} \to \mathbb{R}^{n^2}$ be the linear map defined by $P(\mathbf{e}_i) = \mathbf{0}$ if $\pi_A^{-1}(i)$ is labeled k < n and otherwise $P(\mathbf{e}_i) = \mathbf{e}_j$ if $\pi_A^{-1}(i)$ and $\pi_B^{-1}(j)$ are associated to the same poset element, conflating H^B with the right side of H^A . From this description, we see P is full-rank and lattice-preserving.

Example 3.12. Recall that Figure 1 showed H^A for c = [7145362] in A_7 and H^B for c = [3012] in B_4 . The linear extension π_A is given by the following permutation in two-line notation:

```
 \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 \\ 11 & 1 & 2 & 6 & 3 & 12 & 4 & 18 & 5 & 7 & 13 & 8 & 19 & 9 & 24 & 10 & 14 & 20 & 15 & 25 & 16 & 27 & 17 & 21 & 26 & 22 & 28 & 23 \end{pmatrix}
```

This induces the following linear extension π_B :

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\ 4 & 1 & 2 & 5 & 8 & 3 & 6 & 9 & 12 & 7 & 10 & 13 & 15 & 11 & 14 & 16 \end{pmatrix}$$

We can use these maps to compute $P: \mathbb{R}^{28} \to \mathbb{R}^{16}$. As an example, we will compute $P(\mathbf{e}_1)$ and $P(\mathbf{e}_2)$. Since $\pi_A^{-1}(1)=2$ and 2 has label 1<4=n, $P(\mathbf{e}_1)=\mathbf{0}$. To compute $P(\mathbf{e}_2)$, first notice that $\pi_A^{-1}(2)=3$ and 3 has label $4 \not< 4$. Since the element 3 in H^A corresponds to the element 2 in H^B and $\pi_B^{-1}(1)=2$, $P(\mathbf{e}_2)=\mathbf{e}_1$.

Define $\mathcal{U}_{c^B} := P \circ \mathcal{U}_{c^A} \circ L$.

Theorem 3.13. The map $\mathcal{U}_{c^B} \circ \Pi_{c^B}$ is a unimodular transformation such that, for all vertices $X(\eta(v))$ of $\mathsf{Birk}(c^B)$, we have $(\mathcal{U}_{c^B} \circ \Pi_{c^B})(X(\eta(v))) = o(f^B(v))$. In particular, $\mathsf{Birk}(c^B)$ is integrally equivalent to $\mathcal{O}(H^B)$.

Proof. From the commutative diagram (3.2), we see that $\mathcal{U}_{c^B} \circ \Pi_{c^B} = P \circ \mathcal{U}_{c^A} \circ \Pi_{c^A} \circ \iota$. Thus, $(\mathcal{U}_{c^B} \circ \Pi_{c^B})(X(\eta(v))) = P(o(f^A(\eta(v))))$. By the definition of P, we conclude $P(o(f^A(\eta(v)))) = o(f^B(v))$, as desired.

The maps L and \mathcal{U}_{c^A} are injective. Since P preserves information from the right side of H^A and kills information from the left side of H^A , P is injective on $\mathsf{Aff}(J(H^A)^F)$. The image of $\mathcal{U}_{c^A} \circ L$ is $\mathsf{Aff}(J(H^A)^F)$ by Lemma 3.11, so $P \circ \mathcal{U}_{c^A} \circ L = \mathcal{U}_{c^B}$ is injective.

Since Π_{c^B} is injective on $\mathsf{Aff}(c^B)$, the composition $\mathcal{U}_{c^B} \circ \Pi_{c^B}$ is also injective on $\mathsf{Aff}(c^B)$. Furthermore, since P, \mathcal{U}_{c^A} , Π_{c^A} , and ι are lattice-preserving, we have that $\mathcal{U}_{c^B} \circ \Pi_{c^B}$ is also lattice-preserving. Therefore, $\mathcal{U}_{c^B} \circ \Pi_{c^B}$ is a unimodular transformation.

References

- [1] E. Banaian, S. Chepuri, E. Gunawan, and J. Pan. "*c*-Birkhoff polytopes". 2025. arXiv: 2504.07505.
- [2] G. Birkhoff. "Three observations on linear algebra". *Univ. Nac. Tacuman, Rev. Ser. A* **5** (1946), pp. 147–151.
- [3] A. Björner and F. Brenti. *Combinatorics of Coxeter groups*. Vol. 231. Graduate Texts in Mathematics. Springer, New York, 2005, pp. xiv+363.
- [4] R. Davis and B. Sagan. "Pattern-avoiding polytopes". European J. Combin. 74 (2018), pp. 48–84. DOI.
- [5] C. Defant and R. Li. "Ungarian Markov chains". *Electron. J. Probab.* **28** (2023), Paper No. 1, 39. DOI.
- [6] C. Hohlweg. "Permutahedra and associahedra: generalized associahedra from the geometry of finite reflection groups". *Associahedra, Tamari lattices and related structures*. Vol. 299. Progr. Math. Birkhäuser/Springer, Basel, 2012, pp. 129–159. DOI.
- [7] C. Hohlweg, C. E. M. C. Lange, and H. Thomas. "Permutahedra and generalized associahedra". *Adv. Math.* **226**.1 (2011), pp. 608–640. DOI.
- [8] J.-P. Labbé and C. E. M. C. Lange. "Cambrian acyclic domains: counting *c*-singletons". *Order* **37**.3 (2020), pp. 571–603. DOI.
- [9] N. Reading. "Cambrian lattices". Adv. Math. 205.2 (2006), pp. 313–353. DOI.
- [10] N. Reading. "Clusters, Coxeter-sortable elements and noncrossing partitions". *Trans. Amer. Math. Soc.* **359**.12 (2007), pp. 5931–5958. DOI.
- [11] R. P. Stanley. "Two poset polytopes". Discrete Comput. Geom. 1.1 (1986), pp. 9–23. DOI.
- [12] J. R. Stembridge. "On the fully commutative elements of Coxeter groups". J. Algebraic Combin. 5.4 (1996), pp. 353–385. DOI.
- [13] G. X. Viennot. "Heaps of pieces. I. Basic definitions and combinatorial lemmas". *Combinatoire énumérative (Montreal, Que., 1985/Quebec, Que., 1985)*. Vol. 1234. Lecture Notes in Math. Springer, Berlin, 1986, pp. 321–350. DOI.