
Séminaire Lotharingien de Combinatoire XX (2026) Proceedings of the 38th Conference on Formal Power
Article #YY, 12 pp. Series and Algebraic Combinatorics (Seattle)

Type B c-Birkhoff polytopes are order polytopes
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Abstract. In a previous work, we defined (type A) c-Birkhoff polytopes and showed
that they were unimodularly equivalent to order polytopes. In this extended abstract
we answer the question: what about type B?
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1 Introduction

Given a finite poset H, the order polytope O(H) is a well-understood polytope in R|H| [11].
Its vertices are the indicator vectors of the order ideals of H, its dimension is |H|, and its
normalized volume is the number of linear extensions of H.

On the other hand, let Sm denote the symmetric group on [m] = {1, . . . , m}. Given a
permutation w ∈ Sm, let X(w) be the corresponding permutation matrix, i.e., with 1’s in
row i and column w(i) for all i ∈ [m] and 0’s everywhere else. The Birkhoff polytope for Sm
is the convex hull of all permutation matrices [2].

In [4], Davis and Sagan studied the convex hull of 132 and 312 avoiding permutation
matrices, a subpolytope of the Birkhoff polytope. They proved that the normalized
volume of this polytope is the number of longest chains in the type Am−1 Tamari lattice.
Inspired by their work and the fact that the 132 and 312 avoiding permutations are exactly
the c-singletons for the Coxeter element c = (12 . . . m) written in cycle notation, in [1]
we defined a (type A) Birkhoff subpolytope Birk(c) to be the convex hull of permutation
matrices corresponding to c-singletons for any Coxeter element c. We then proved that
Birk(c) is integrally equivalent to the order polytope of the heap of the longest c-sorting
word of Sm. A consequence of this result is that the normalized volume of Birk(c) is the
number of longest (length (m

2 )) chains in the (type Am−1) c-Cambrian lattice [9].
In the present paper, we turn our attention to the Coxeter group Bn which is realized

as the group of permutations v on ±[n] = {−n, . . . ,−1, 1, . . . , n} satisfying v(−k) =
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−v(k); such permutations are called signed permutations on [n]. We can naturally embed
each v ∈ Bn into a permutation η(v) in S2n by identifying −n, . . . ,−1, 1, . . . , n with
1, . . . , n, n + 1, . . . , 2n, in this order.

For each Coxeter element cB in Bn, we define a (type B) Birkhoff subpolytope.

Definition 1.1 (cB-Birkhoff polytope). Given a Coxeter element cB ∈ Bn, let Birk(cB) be
the convex hull of

{X(η(v)) | v is a cB-singleton in Bn}.

The main goal of this paper is to give a proof sketch that Birk(cB) is integrally equiva-
lent to the order polytope of the heap of the longest cB-sorting word of Bn (Theorem 3.13).
As in the type A work [1], a consequence of this result is that the normalized volume of
Birk(cB) is the number of longest (length n2) chains in the (type Bn) cB-Cambrian lattice.

2 Background and notation

A Coxeter system (W, S) is a Coxeter group W together with a set S of generators for W
called simple reflections subject to the relations s2 = e for all s ∈ S and the braid relations
(st)m(s,t) = e for all s, t such that m(s, t) ≤ ∞. For s, t ∈ S where m(s, t) = 2, we have
st = ts, which we call a commutation relation. An application of a commutation relation to
a product of simple reflections is called a commutation move. A Coxeter element c in W is a
product of all simple reflections in any order, where each reflection appears exactly once.

Given w ∈ W, the minimum number of simple reflections among all expressions for
w as a product of simple reflections is called the length of w, and is denoted by ℓ(w). A
reduced decomposition of w is an expression w = si1 · · · siℓ(w)

realizing ℓ(w).

2.1 Type An and Bn permutations

This paper focuses on the Coxeter groups of type A and B, which we denote by An
and Bn. We now review the combinatorial realizations of these groups in terms of
permutations and signed permutations. For more details, see for example [3]. The set of
simple reflections in An are denoted sA

1 , . . . , sA
n ; and the set of simple reflections in Bn are

denoted sB
0 , sB

1 , . . . , sB
n−1. We sometimes write sk when W is understood.

Let An denote the symmetric group on n+ 1 elements. We can represent a permutation
w ∈ An in one-line notation as w = w(1)w(2) . . . w(n + 1). The simple reflections for An
are adjacent transpositions sA

k = (k k + 1) for 1 ≤ k ≤ n. Distinct simple reflections satisfy
commutation relation sA

i sA
j = sA

j sA
i if and only if |i − j| > 1. The longest element of An is

the permutation wA
0 = (n + 1)n . . . 321 and ℓ(wA

0 ) = (n+1
2 ).

Let Bn be the group of signed permutations on ±[n] = {−n, . . . ,−2,−1, 1, 2, . . . , n}
which satisfies w(−k) = −w(k) for all k ∈ [n]. We write these permutations in
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full one-line notation as w(−n)w(−n + 1) . . . w(−1)w(1)w(2) . . . w(n) or in window no-
tation as w(1)w(2) . . . w(n). The simple reflections for Bn are sB

0 = (−1 1) and sB
k =

(−k − 1 −k)(k k + 1) for k = 1, . . . , n − 1. As in An, distinct simple reflections in
Bn satisfy commutation relation sB

i sB
j = sB

j sB
i if and only if |i − j| > 1. The longest

element of Bn is the signed permutation wB
0 = (−1)(−2) . . . (−n) in window notation

and ℓ(wB
0 ) = n2.

To simplify notation, we refer to a reduced decomposition si1 · · · siℓ(w)
of w in An or

Bn via its reduced word
[
i1 · · · iℓ(w)

]
. Given a reduced word [u], the equivalence class

consisting of all words that can be obtained from [u] by a sequence of commutation moves
is called the commutation class of [u].

2.2 Heaps

We review the classical theory of heaps [13], following the exposition in [12].

Definition 2.1. Let W be the Coxeter group An or Bn. Given a reduced word [a] =
[a1 · · · aℓ] of an element in W, consider the partial order ≼ on the set {1, . . . , ℓ} obtained
via the transitive closure of the relations

x ≺ y

for x < y such that |ax − ay| ≤ 1. For each 1 ≤ x ≤ ℓ, the label of the poset element x is ax.
This labeled poset is called the heap for [a], denoted Heap([a]).

The Hasse diagram for this poset with elements {1, . . . , ℓ} replaced by their labels is
called the heap diagram for [a]. In our figures, we represent each label j by the simple
reflection sj for clarity.

Example 2.2. 1. The first two pictures in Figure 1 show the Hasse diagram and heap
diagram of Heap([aaaa]) for [a] = [7145362]. The elements of the underlying poset
are {1, 2, . . . , 28}, and the possible labels are {1, 2, . . . , 7}.

2. The last two pictures in Figure 1 show the Hasse diagram and heap diagram of
Heap([bbbb]) for [b] = [3012]. The elements of the underlying poset are {1, 2, . . . , 16},
and the possible labels are {0, 1, 2, 3}.

We can understand the commutation class of [a] by looking at linear extensions of
Heap([a]).

Definition 2.3. A linear extension π = π(1) · · ·π(ℓ) of a partial order ≼ on {1, . . . , ℓ}
is a total order on the poset elements that is consistent with the structure of the poset,
that is, x ≺ y implies π(x) < π(y). Given a reduced word [a] = [a1 · · · aℓ], a labeled
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Figure 1: From left to right: Hasse diagram of the underlying poset of Heap([aaaa]) for
[a] = [7145362] in A7; heap diagram of Heap([aaaa]); Hasse diagram of the underlying
poset of Heap([bbbb]) for [b] = [3012] in B4; heap diagram of Heap([bbbb])

linear extension of Heap([a]) is a word
[

aπ(1) · · · aπ(ℓ)

]
where π = π(1) · · ·π(ℓ) is a linear

extension of Heap([a]).

Proposition 2.4. [12, Proof of Proposition 2.2] Given a reduced word [a], the set of labeled
linear extensions of the heap for [a] is the commutation class of [a].

2.3 The heap of the longest c-sorting word in An and Bn

The notion of c-sorting words was introduced by Reading in [10]. Fix a reduced word
[a1a2 . . . an] for a Coxeter element c, and define an infinite word

c∞ := a1a2 . . . an | a1a2 . . . an | · · ·

The c-sorting word of w ∈ W is the lexicographically first (as a sequence of positions in
c∞) subword of c∞ that is a reduced word for w. Denote this word by sortc(w). If a word
[u] = [u1 . . . uℓ] is the c-sorting word of an element in W, we refer to [u] as a c-sorting
word.

In this paper, we are interested in the heap diagram of sortc(w0) for An and Bn. The
following is proven in Sections 6.2 and 6.3 of [5], for types A and B, respectively.

Lemma 2.5. 1. The c-sorting word for w0 in An is a concatenation of nonempty sub-
words of c, sortc(w0) =

[
K1 | K2 | · · · | Kp

]
where K1 ⊇ K2 ⊇ · · · ⊇ Kp as sets.

For a construction of the heap diagram of sortc(w0) in type A, see for example [1,
Algorithm 6.1].
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2. The c-sorting word of w0 in Bn is cn, so, to draw the heap of cn, we simply stack n
“layers” of Heap(c).

See Figure 1 for the heap diagrams of sortc(w0) for c = [7145362] in A7 and for
c = [3012] in B4.

2.4 c-singleton permutations

In [7], Hohlweg, Lange, and Thomas introduced the notion of c-singletons; following the
survey [6], we will adopt the definition that w ∈ W is a c-singleton if and only if some
reduced word of w is a prefix of a word in the commutation class of sortc(w0). We will
also use the following characterization of c-singletons, which follows from Proposition 2.4.

Lemma 2.6. An element w ∈ W is a c-singleton if and only if there exists a reduced
word [u] of w and an order ideal I of Heap(sortc(w0)) such that I = Heap([u]).

The c-singletons form a distributive sublattice of the right weak order on W, denoted
L(c-singletons) [7]. For a poset H, let J(H) denote the lattice of order ideals of H. The
following are due to [8, Proposition 3] and [1, Section 2].

Proposition 2.7. Let [u] =
[
u1u2 . . . uℓ(w0)

]
denote sortc(w0), and consider the labeled

poset H = Heap([u]) on {1, 2, . . . , ℓ(w0)}, following Definition 2.1. Given an order ideal I
of H, let [u]I = [ui]u∈I denote the subword of [u] at positions I.

1. The word [u]I is a c-sorting word.

2. The map

Perm: J(H) → L(c-singletons)
I 7→ [u]I

is a poset isomorphism, and the inverse map of Perm is

f : L(c-singletons) → J(H)

w 7→ Heap(sortc(w))

A barring of a set Z of integers is a partition of Z into two sets Z and Z. If d ∈ Z
(resp. u ∈ Z), we call d a lower-barred number (resp. we call u a upper-barred number) and
sometimes emphasize this by writing d (resp. u).

Let c be a Coxeter element in W. Let Z = [2, n] = {2, 3, . . . , n} if W = An and
Z = ±[1, n − 1] = {−(n − 1), . . . ,−2,−1, 1, 2, . . . , n − 1} if W = Bn. First, the barring
of [2, n] and [1, n − 1] in types A and B respectively is defined as follows: if si appears
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after si−1 in any reduced word of c, then i is a lower-barred number; otherwise i is an
upper-barred number. For W = Bn, the barring of [1, n − 1] is extended to a barring of
Z = ±[1, n − 1] by specifying that the barring of −i is opposite the barring of i.

We denote the lower-barred numbers by d1 < . . . < dr and the upper-barred numbers
by u1 < . . . < us.

Remark 2.8 ([10, Section 3]). We can write a Coxeter element c of An as a single cycle of
length n + 1 of the form

c = (1 d1 . . . dr (n + 1) us . . . u1)

and the Coxeter element c of Bn as a single cycle of length 2n of the form

c = (−n d1 . . . dr n us . . . u1).

Example 2.9. Consider the Coxeter elements cA = sA
7 sA

1 sA
4 sA

5 sA
3 sA

6 sA
2 in A7 and cB =

sB
3 sB

0 sB
1 sB

2 in B4 as in Figure 1. Their heap diagrams are as follows.

s4

s5s3

s6s2

s7s1

s0

s1

s2

s3

Then cA = (1 2 5 6 8 7 4 3 ) and cB = (−4 −3 1 2 4 3 −1 −2 ).

3 Type B c-Birkhoff polytopes

For the rest of the paper, we will consider the Coxeter groups Bn and A2n−1. The
two groups are related by an “unfolding” injective homomorphism η : Bn → A2n−1,
determined by

η(sB
i ) =

{
sA

n if i = 0
sA

n+is
A
n−i if i > 0

for each simple reflection sB
i of Bn.

Let cB denote a Coxeter element of Bn and let cA = η(cB); note that cA is a Coxeter
element of A2n−1.

Remark 3.1. The homomorphism η can be alternatively defined as follows. Let v ∈ Bn,
and let w = η(v) ∈ A2n−1 = S2n. Then, for k = 1, . . . , n, we have

w(n + k) = v(k) + n and w(n + 1 − k) = −v(k) + n + 1 if v(k) > 0
w(n + k) = v(k) + n + 1 and w(n + 1 − k) = −v(k) + n if v(k) < 0
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For example, let v = (−1) (−4) 3 (−2) ∈ B4 in window notation, and let w = η(v);
then w = 6 2 8 5 4 1 7 3. A second example is η(cB) = cA, where cA and cB are as in
Example 2.9; the symmetry we see in the barring of [2, 7] in this example holds in general:

Lemma 3.2. In the barring of [2, 2n − 1] associated to the Coxeter element η(cB) ∈ A2n−1,
the integer i is lower-barred if and only if 2n + 1 − i is upper-barred.

Define the type Bn cB-Birkhoff polytope, denoted Birk(cB), to be the convex hull of

{X(η(v)) | v ∈ Bn is a cB-singleton}.

The vertices of Birk(cB) are precisely the permutation matrices X(η(v)) where v is a
cB-singleton. Let Aff(cA) (resp. Aff(cB)) denote the affine hull of the vertices of Birk(cA)
(resp. Birk(cB)).

3.1 Reflection-invariant order ideals and rotation-invariant matrices

Let HB = Heap(sortcB(wB
0 )) and HA = Heap(sortcA(wA

0 )).

Lemma 3.3. HA has reflectional symmetry about the vertical y-axis; the right side of HA

has the same underlying poset as HB.

See Figure 1 for the heap diagrams of HA and HB where cB = sB
3 sB

0 sB
1 sB

2 and cA =
η(cB) = sA

7 sA
1 sA

4 sA
5 sA

3 sA
6 sA

2 . This example illustrates Lemma 3.3.
Let ρ : HA → HA be the “reflection" map which sends every vertex in the heap

diagram of HA to its reflection about the y-axis. This induces a map J(HA) → J(HA)
which we will also call ρ. We say that I ∈ J(HA) is reflection-invariant if ρ(I) = I. Let
J(HA)F denote the set of reflection-invariant order ideals in J(HA).

By Lemma 3.3 we can view HB as the subposet on the right side of HA. This allows us
to define a bijection α : J(HB) → J(HA)F as follows: if Iv is an order ideal of HB, let α(Iv)
be the order ideal of HA that contains elements on the right side of HA corresponding
to the elements of Iv as well as the image of these elements under ρ. The inverse map
β : J(HA)F → J(HB) ignores the elements of Iw ∈ J(HA)F labeled 1, . . . , n − 1 and
identifies the rest with the corresponding elements in HB.

Consider the poset isomorphisms, Perm and f , defined in Proposition 2.7. To dis-
tinguish between type A and type B versions of these maps, we will sometimes use a
superscript A or B.

Lemma 3.4. 1. If v is a cB-singleton, then η(v) is a cA-singleton.

2. If Iw ∈ J(HA) is reflection-invariant and w = PermA(Iw), then w = η(v) for
some cB-singleton v. Conversely, if v is a cB-singleton, then f A(η(v)) is reflection-
invariant.
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Proof. (1) Let v be a cB-singleton and let Iv denote the order ideal f B(v) of HB. Define
Iw to be the order ideal α(Iv) of HA. Then by Proposition 2.7 there is a cA-singleton w
where w = PermA(Iw). By construction, w = η(v).

(2) Suppose Iw is a reflection-invariant order ideal of HA. Define Iv to be the order
ideal β(Iw) of HB. Then by Proposition 2.7 there is a cB-singleton v where v = PermB(Iv).
By construction, w = η(v).

Conversely, if v is a cB-singleton, then v = Perm(Iv) for some Iv ∈ J(HB). By
construction η(v) = PermA(α(Iv)). Since α(Iv) is reflection-invariant and since f A and
PermA are inverse maps, the claim follows.

It follows from Lemma 3.4(1) that Birk(cB) is a subpolytope of the cA-Birkhoff polytope
Birk(cA) and that Aff(cB) is an affine subspace of Aff(cA).

Definition 3.5. Let w ∈ Am−1 = Sm. The reverse of w, denoted wrev, is the result of writing
w in one-line notation backwards; that is, wrev(i) = w(m + 1 − i). The complement of
w, denoted wcomp, is the result of replacing every entry i in the one-line notation of w
with m + 1 − i. The reverse-complement of w, denoted wrevcomp, is the result of taking the
complement of the reverse of w; that is, wrevcomp(i) = m + 1 − w(m + 1 − i).

The permutation matrix X(wrev) is the result of reflecting the permutation matrix X(w)
with respect to a horizontal line, while X(wcomp) is the result of reflecting X(w) with
respect to a vertical line. The composition of these two actions is the 180 degree rotation,
and thus the 180 degree rotation of the permutation matrix X(w) is the permutation
matrix X(wrevcomp) of the reverse-complement of w.

As a consequence, given a permutation w ∈ S2n, its permutation matrix X(w) is
invariant under 180 degree rotation if and only if w is equal to its reverse-complement,
that is, for all 1 ≤ i ≤ 2n, w(i) = wrev(i) = 2n + 1 − w(2n + 1 − i). Equivalently, X(w) is
invariant under 180 degree rotation if and only if w satisfies

w(n + k) + w(n + 1 − k) = 2n + 1 (3.1)

for all k = 1, . . . , n.
Let A180

2n−1 denote {w ∈ A2n−1 | w satisfies (3.1)}, that is, A180
2n−1 is the set of permu-

tations in A2n−1 whose permutation matrices are invariant under 180 degree rotation.
Remark 3.1 implies the following.

Lemma 3.6. The image η(Bn) is equal to A180
2n−1.

3.2 Type B lattice-preserving projection

In [1, Section 5], we defined a projection ΠcA from the space of (2n)× (2n) R-valued
matrices to R(2n

2 ) by choosing exactly (2n
2 ) positions from a matrix X; the positions are
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determined by the Coxeter element cA. We proved in [1, Theorem 5.9] that ΠcA is injective
on Aff(cA).

Proposition 3.7 (Zero relations [1, Proposition 4.4]). If X ∈ Aff(cA), then X satisfies the
following.

• For each upper-barred u, we have X(i, u) = 0 for all 1 ≤ i ≤ min(u − 1, n + 1 − u).

• For each lower-barred d, X(i, d) = 0 for all max(d + 1, n + 3 − d) ≤ i ≤ n + 1.

The projection ΠcA never includes positions on the main diagonal or positions whose
entries are guaranteed to be zero for X ∈ Aff(cA) by Proposition 3.7. When positions
below the main diagonal are included, these positions must come from the bottom half
of X.

In the following, we view the projection ΠcA as a subset of [2n]× [2n].

Lemma 3.8. The map ΠcA chooses n2 positions from the top half (rows 1 through n) of a
matrix X.

Proof. Let X ∈ Aff(cA). The subset of entries taken by ΠcA in the top half of X are exactly
those above the main diagonal and not in a spot which is guaranteed to be 0 (as described
in Proposition 3.7). The number of entries above the main diagonal and in the top half
are (2n − 1) + (2n − 2) + · · ·+ n = n2 + (n

2). The total number of entries in X guaranteed
to be 0 is 2(n

2), and Lemma 3.2 implies that exactly half of these will be above the main
diagonal. Therefore, ΠcA restricted to [n]× [2n] has exactly n2 entries.

It follows from Lemma 3.6 that, for each v ∈ Bn, the top half of X(η(v)) determines
its bottom half. In view of this fact and Lemma 3.8, we define

ΠcB : {(2n)× (2n) R-valued matrices} → Rn2

to be the result of restricting ΠcA to [n]× [2n].

Example 3.9. Consider cA = (1 2 5 6 8 7 4 3 ) and cB = (−4 −3 1 2 4 3 −1 −2 ) from
Example 2.9. Figure 2 shows the projection ΠcA and ΠcB (first two pictures). It also shows
the permutation matrix for η(v) ∈ S8 for the cB-singleton v = (1 4 3 − 1 − 4 − 3)(2 − 2)
with circles around entries recorded by ΠcB (third picture).

Proposition 3.10. The map ΠcB is a linear transformation which is injective on Aff(cB)
and sends integral points to integral points.

Proof. Consider X ∈ Aff(cB). The first k positions in row k for 1 ≤ k ≤ n are not
guaranteed to be zero by Proposition 3.7 and also not chosen by ΠcB . The other entries in
the row are either guaranteed to be zero by Proposition 3.7 or are chosen by ΠcB .
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28 X X 24 19 X 12
X X 25 20 6 13

X 26 21 7 14
27 22 8 15

23 9 16
3 X 10 17

4 1 X X 18
2 X 5 11 X X

16 X X 12 8 X 4
X X 13 9 1 5

X 14 10 2 6
15 11 3 7

X
X X

X X X

0 1 0 0 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0

Figure 2: First two pictures: Projections ΠcA and ΠcB of Example 3.9. Red X’s indicate
the entries which must be zero by Proposition 3.7. Numbers indicate entries chosen by
ΠcA and ΠcB , respectively, in order. Third picture: The permutation matrix for η(v) ∈ S8
for v = (1 4 3 − 1 − 4 − 3)(2 − 2), circling the entries recorded by ΠcB .

Since X ∈ Aff(cB), X is also in Aff(cA). Thus, [1, Theorem 4.11 “Top sum relations”]
tells us that there are k relations involving entries of rows 1 through k. Working from
k = 1 to k = n, we can use these relations, the values of the entries in rows above row k,
and the values of the entries in positions k + 1 through 2n of row k to determine the first k
entries of the kth row (see the proof of [1, Theorem 5.9]). This shows that ΠcB determines
the entire top half of X. By Lemma 3.6, we know that X is invariant under 180 degree
rotation, and thus the top half of X determines the bottom half of X.

3.3 Proof sketch of main theorem

In this section, we will prove our main theorem using a composition of several maps.
The maps we will define and use throughout the section are depicted in the following
commutative diagram.

Aff(cA) ΠcA(Aff(cA)) R(2n
2 )

Aff(cB) ΠcB(Aff(cB)) Rn2

ΠcA UcA

P

ΠcB

ι

UcB

L (3.2)

We first define the map L. Since ΠcB is injective, if we restrict its codomain to be
ΠcB(Aff(cB)) then it is bijective. Thus it has an inverse Π−1

cB : ΠcB(Aff(cB)) → Aff(cB).
Define L = ΠcA ◦ ι ◦ Π−1

cB . Since L is a composition of injective functions, L is injective.
Recall the map f from Proposition 2.7 and let o(I) denote the indicator vector of

an order ideal I of a poset. In the proof of our main theorem in [1], we showed
the existence of a unimodular transformation UcA such that, for all cA-singletons w,
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(UcA ◦ ΠcA)(X(w)) = o( f A(w)). Since L maps from ΠcB(Aff(cB)) to ΠcA(Aff(cA)), we can
consider the composition UcA ◦ L.

Let Aff(J(HA)) denote the affine hull of indicator vectors of order ideals of HA and
define Aff(J(HA)F) accordingly.

Lemma 3.11. The image (UcA ◦ L)(ΠcB(Aff(cB))) is equal to Aff(J(HA)F).

Proof. Given a cA-singleton w, from [1, Theorem 6.21], UcA ◦ ΠcA(X(w)) = o( f A(w)).
Given a cB-singleton v, we know from Lemma 3.4(2) that the order ideal f A(η(v)) is
reflection-invariant. Therefore, applying UcA ◦ L ◦ ΠcB = UcA ◦ ΠcA ◦ ι to the set

{X(η(v)) | v is a cB-singleton}

produces the set of indicator vectors of the order ideals in J(HA)F, and the claim follows.

Now we will define the map P. In [1, Section 6.1], we defined a specific linear
extension, πA, of HA coming from the construction of the “diagonal reading word”.
There is an induced linear extension on HB, πB, viewing HB as a subposet of HA. Let
P : R(2n

2 ) → Rn2
be the linear map defined by P(ei) = 0 if π−1

A (i) is labeled k < n and
otherwise P(ei) = ej if π−1

A (i) and π−1
B (j) are associated to the same poset element,

conflating HB with the right side of HA. From this description, we see P is full-rank and
lattice-preserving.

Example 3.12. Recall that Figure 1 showed HA for c = [7145362] in A7 and HB for
c = [3012] in B4. The linear extension πA is given by the following permutation in
two-line notation:(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
11 1 2 6 3 12 4 18 5 7 13 8 19 9 24 10 14 20 15 25 16 27 17 21 26 22 28 23

)

This induces the following linear extension πB:
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4 1 2 5 8 3 6 9 12 7 10 13 15 11 14 16

)

We can use these maps to compute P : R28 → R16. As an example, we will compute P(e1)
and P(e2). Since π−1

A (1) = 2 and 2 has label 1 < 4 = n, P(e1) = 0. To compute P(e2),
first notice that π−1

A (2) = 3 and 3 has label 4 ̸< 4. Since the element 3 in HA corresponds
to the element 2 in HB and π−1

B (1) = 2, P(e2) = e1.

Define UcB := P ◦ UcA ◦ L.

Theorem 3.13. The map UcB ◦ ΠcB is a unimodular transformation such that, for all
vertices X(η(v)) of Birk(cB), we have (UcB ◦ ΠcB)(X(η(v))) = o( f B(v)). In particular,
Birk(cB) is integrally equivalent to O(HB).



12 Esther Banaian, Sunita Chepuri, Emily Gunawan, and Jianping Pan

Proof. From the commutative diagram (3.2), we see that UcB ◦ ΠcB = P ◦ UcA ◦ ΠcA ◦ ι.
Thus, (UcB ◦ ΠcB)(X(η(v))) = P(o( f A(η(v)))). By the definition of P, we conclude
P(o( f A(η(v)))) = o( f B(v)), as desired.

The maps L and UcA are injective. Since P preserves information from the right side
of HA and kills information from the left side of HA, P is injective on Aff(J(HA)F). The
image of UcA ◦ L is Aff(J(HA)F) by Lemma 3.11, so P ◦ UcA ◦ L = UcB is injective.

Since ΠcB is injective on Aff(cB), the composition UcB ◦ ΠcB is also injective on Aff(cB).
Furthermore, since P, UcA , ΠcA , and ι are lattice-preserving, we have that UcB ◦ ΠcB is also
lattice-preserving. Therefore, UcB ◦ ΠcB is a unimodular transformation.
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