- **65.** Show that the polar equation $r = a \sin \theta + b \cos \theta$, where
 - **66.** Show that the curves $r = a \sin \theta$ and $r = a \cos \theta$ intersect at right angles.

 $ab \neq 0$, represents a circle, and find its center and radius.

- 67-72 Use a graphing device to graph the polar curve. Choose the parameter interval to make sure that you produce the entire curve.
 - **67.** $r = 1 + 2\sin(\theta/2)$ (nephroid of Freeth)
 - **68.** $r = \sqrt{1 0.8 \sin^2 \theta}$ (hippopede)
 - **69.** $r = e^{\sin \theta} 2\cos(4\theta)$ (butterfly curve)
 - **70.** $r = |\tan \theta|^{|\cot \theta|}$ (valentine curve)
 - **71.** $r = 1 + \cos^{999}\theta$ (Pac-Man curve)
 - **72.** $r = 2 + \cos(9\theta/4)$

668

- **73.** How are the graphs of $r = 1 + \sin(\theta \pi/6)$ and $r = 1 + \sin(\theta \pi/3)$ related to the graph of $r = 1 + \sin\theta$? In general, how is the graph of $r = f(\theta \alpha)$ related to the graph of $r = f(\theta)$?
- **74.** Use a graph to estimate the *y*-coordinate of the highest points on the curve $r = \sin 2\theta$. Then use calculus to find the exact value.
- **75.** Investigate the family of curves with polar equations $r = 1 + c \cos \theta$, where c is a real number. How does the shape change as c changes?
- **76.** Investigate the family of polar curves $r = 1 + \cos^n \theta$

where n is a positive integer. How does the shape change as n increases? What happens as n becomes large? Explain the shape for large n by considering the graph of r as a function of θ in Cartesian coordinates.

77. Let P be any point (except the origin) on the curve $r = f(\theta)$. If ψ is the angle between the tangent line at P and the radial line OP, show that

$$\tan \psi = \frac{r}{dr/d\theta}$$

[*Hint*: Observe that $\psi = \phi - \theta$ in the figure.]

- **78.** (a) Use Exercise 77 to show that the angle between the tangent line and the radial line is $\psi = \pi/4$ at every point on the curve $r = e^{\theta}$.
 - (b) Illustrate part (a) by graphing the curve and the tangent lines at the points where $\theta = 0$ and $\pi/2$.
 - (c) Prove that any polar curve $r = f(\theta)$ with the property that the angle ψ between the radial line and the tangent line is a constant must be of the form $r = Ce^{k\theta}$, where C and k are constants.